
Adel M F Alhalawani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inorganic hemostats: The state-of-the-art and recent advances. Materials Science and Engineering C, 2016, 58, 1255-1268.	7.3	124
2	Potency and Cytotoxicity of a Novel Gallium-Containing Mesoporous Bioactive Glass/Chitosan Composite Scaffold as Hemostatic Agents. ACS Applied Materials & Interfaces, 2017, 9, 31381-31392.	8.0	95
3	Bioactive glass reinforced elastomer composites for skeletal regeneration: A review. Materials Science and Engineering C, 2015, 53, 175-188.	7.3	73
4	Materials and techniques used in cranioplasty fixation: A review. Materials Science and Engineering C, 2016, 66, 315-322.	7.3	72
5	Mechanical properties of hydroxyapatite–zirconia compacts sintered by two different sintering methods. Journal of Materials Science: Materials in Medicine, 2010, 21, 1109-1120.	3.6	62
6	A review of sternal closure techniques. Journal of Biomaterials Applications, 2013, 28, 483-497.	2.4	55
7	The role of Sr2+ on the structure and reactivity of SrO–CaO–ZnO–SiO2 ionomer glasses. Journal of Materials Science: Materials in Medicine, 2008, 19, 953-957.	3.6	49
8	Characterization of silica-based and borate-based, titanium-containing bioactive glasses for coating metallic implants. Journal of Non-Crystalline Solids, 2016, 433, 95-102.	3.1	33
9	A novel tantalum-containing bioglass. Part II. Development of a bioadhesive for sternal fixation and repair. Materials Science and Engineering C, 2017, 71, 401-411.	7.3	33
10	The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 367-376.	3.4	31
11	The role of poly(acrylic acid) in conventional glass polyalkenoate cements. Journal of Polymer Engineering, 2016, 36, 221-237.	1.4	29
12	Fabrication and characterization of poly(octanediol citrate)/gallium-containing bioglass microcomposite scaffolds. Journal of Materials Science, 2015, 50, 2189-2201.	3.7	28
13	Antibacterial properties of poly (octanediol citrate)/gallium-containing bioglass composite scaffolds. Journal of Materials Science: Materials in Medicine, 2016, 27, 18.	3.6	25
14	Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty. Journal of Materials Science: Materials in Medicine, 2010, 21, 59-66.	3.6	23
15	Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants. Heliyon, 2017, 3, e00420.	3.2	23
16	A novel tantalum-containing bioglass. Part I. Structure and solubility. Materials Science and Engineering C, 2017, 72, 202-211.	7.3	23
17	Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. Materials Science and Engineering C, 2019, 101, 521-538.	7.3	23
18	The effect of ZnO ↔ Ta2O5 substitution on the structural and thermal properties of SiO2-ZnO-SrO-CaO-P2O5 glasses. Materials Characterization, 2016, 114, 218-224.	4.4	22

Adel M F Alhalawani

#	Article	IF	CITATIONS
19	A Novel Glass Polyalkenoate Cement for Fixation and Stabilisation of the Ribcage, Post Sternotomy Surgery: An ex-Vivo Study. Journal of Functional Biomaterials, 2013, 4, 329-357.	4.4	17
20	The Role of Poly(Methyl Methacrylate) in Management of Bone Loss and Infection in Revision Total Knee Arthroplasty: A Review. Journal of Functional Biomaterials, 2020, 11, 25.	4.4	17
21	Antibacterial and osteo-stimulatory effects of a borate-based glass series doped with strontium ions. Journal of Biomaterials Applications, 2016, 31, 674-683.	2.4	16
22	A review of materials for managing bone loss in revision total knee arthroplasty. Materials Science and Engineering C, 2019, 104, 109941.	7.3	16
23	Bone cement as a local chemotherapeutic drug delivery carrier in orthopedic oncology: A review. Journal of Bone Oncology, 2021, 26, 100345.	2.4	16
24	Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion. Journal of Functional Biomaterials, 2016, 7, 32.	4.4	15
25	Osteogenic differentiation of mesenchymal stem cells on a poly (octanediol citrate)/bioglass composite scaffold in vitro. Materials and Design, 2016, 109, 434-442.	7.0	15
26	Characterization and fracture property of different strontium-containing borate-based glass coatings for Ti6Al4V substrates. Journal of Non-Crystalline Solids, 2017, 458, 69-75.	3.1	13
27	An Injectable Glass Polyalkenoate Cement Engineered for Fracture Fixation and Stabilization. Journal of Functional Biomaterials, 2017, 8, 25.	4.4	13
28	Novel adhesives for sternal fixation and stabilization: A biomechanical analysis. Clinical Biomechanics, 2019, 62, 66-71.	1.2	13
29	Tantalum-containing mesoporous bioactive glass powder for hemostasis. Journal of Biomaterials Applications, 2021, 35, 924-932.	2.4	13
30	<i>In vivo</i> detection of monosodium urate crystal deposits by Raman spectroscopy—a pilot study: Table 1. Rheumatology, 2016, 55, 379-380.	1.9	11
31	Development of a novel bioactive glass suitable for osteosarcomaâ€related bone grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1186-1193.	3.4	11
32	Rapidly-Dissolving Silver-Containing Bioactive Glasses for Cariostatic Applications. Journal of Functional Biomaterials, 2018, 9, 28.	4.4	11
33	The effect of tantalum incorporation on the physical and chemical properties of ternary silicon–calcium–phosphorous mesoporous bioactive glasses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2229-2237.	3.4	11
34	Effect of TiO2 doping on degradation rate, microstructure and strength of borate bioactive glass scaffolds. Materials Science and Engineering C, 2020, 107, 110351.	7.3	11
35	In vitro evaluation of novel titaniaâ€containing borate bioactive glass scaffolds. Journal of Biomedical Materials Research - Part A, 2021, 109, 146-158.	4.0	11
36	Raman Spectroscopic Analysis of Fingernail Clippings Can Help Differentiate between Postmenopausal Women who Have and Have Not Suffered a Fracture. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 2016, 9, CMAMD.S38493.	1.2	10

#	Article	IF	CITATIONS
37	Silver Nanoparticle Coated Bioactive Glasses - Composites with Dex/CMC Hydrogels: Characterization, Solubility, and In Vitro Biological Studies. Macromolecular Bioscience, 2015, 15, 1146-1158.	4.1	9
38	Novel adhesives for distal radius fixation: A biomechanical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 99-106.	3.1	9
39	Raman Spectroscopy Applied to the Noninvasive Detection of Monosodium Urate Crystal Deposits. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 2015, 8, CMAMD.S29061.	1.2	8
40	Glass Polyalkenoate Cements Designed for Cranioplasty Applications: An Evaluation of Their Physical and Mechanical Properties. Journal of Functional Biomaterials, 2016, 7, 8.	4.4	7
41	Common treatments and procedures used for fractures of the distal radius and scaphoid: A review. Materials Science and Engineering C, 2017, 74, 422-433.	7.3	7
42	Measurement of Adhesion of Sternal Wires to a Novel Bioactive Glass-Based Adhesive. Journal of Functional Biomaterials, 2019, 10, 37.	4.4	7
43	Drug-eluting cements for hard tissue repair: A comparative study using vancomycin and RNPA1000 to inhibit growth of <i>Staphylococcus aureus</i> . Journal of Biomaterials Applications, 2014, 28, 1235-1246.	2.4	6
44	Percutaneous upper extremity fracture fixation using a novel glass-based adhesive. Journal of Orthopaedics, 2018, 15, 67-69.	1.3	6
45	The effect of Mg 2+ incorporation into the glass phase of zinc-based glass polyalkenoate cements. Journal of Non-Crystalline Solids, 2018, 483, 106-117.	3.1	6
46	In vivo analysis of a proprietary glass-based adhesive for sternal fixation and stabilization using rabbit and sheep models. Journal of Materials Science: Materials in Medicine, 2021, 32, 53.	3.6	5
47	Influence of gallium on the surface properties of zinc based glass polyalkenoate cements. Materials Chemistry and Physics, 2014, 147, 360-364.	4.0	4
48	Effect of Nitrogen on Properties of Na ₂ O–CaO–SrO–ZnO–SiO ₂ Glasses. Journal of the American Ceramic Society, 2015, 98, 748-757.	3.8	4
49	Comparative study of Weibull characteristic strength and mean strength of GPCs to confirm the minimum number of samples needed for confident strength reporting. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43, 53-58.	3.1	4
50	Incorporating Germanium Oxide into the Glass Phase of Novel Zinc/Magnesium-Based GPCs Designed for Bone Void Filling: Evaluating Their Physical and Mechanical Properties. Journal of Functional Biomaterials, 2018, 9, 47.	4.4	4
51	Tantalum-containing meso-porous glass fibres for hemostatic applications. Materials Today Communications, 2021, 27, 102260.	1.9	4
52	Preliminary Investigation of the Dissolution Behavior, Cytocompatibility, Effects of Fibrinogen Conformation and Platelet Adhesion for Radiopaque Embolic Particles. Journal of Functional Biomaterials, 2013, 4, 89-113.	4.4	3
53	Investigating the addition of SiO ₂ –CaO–ZnO–Na ₂ O–TiO ₂ bioactive glass to hydroxyapatite: Characterization, mechanical properties and bioactivity. Journal of Biomaterials Applications, 2015, 30, 495-511.	2.4	3
54	A Preliminary Evaluation of the Ability of Keratotic Tissue to Act as a Prognostic Indicator of Hip Fracture Risk. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 2018, 11, 117954411775405.	1.2	3

#	Article	IF	CITATIONS
55	The effect of calcination rate on the structure of mesoporous bioactive glasses. Journal of Sol-Gel Science and Technology, 2019, 89, 426-435.	2.4	3
56	Adhesion of bioactive glass-based adhesive to bone. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105018.	3.1	3
57	Calcium sulfate ontaining glass polyalkenoate cement for revision total knee arthroplasty fixation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3356-3369.	3.4	2
58	A glass polyalkenoate cement carrier for bone morphogenetic proteins. Journal of Materials Science: Materials in Medicine, 2015, 26, 151.	3.6	1
59	Injectable glass polyalkenoate cements: evaluation of their rheological and mechanical properties with and without the incorporation of lidocaine hydrochloride. Biomedical Physics and Engineering Express, 2018, 4, 027002.	1.2	1
60	Comparative Evaluation of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using a Sheep Model. Journal of Functional Biomaterials, 2021, 12, 44.	4.4	1
61	A Gallium-doped cement for the treatment of bone cancers. The effect of ZnO ↔ Ga ₂ O ₃ substitution of an ionomeric glass series on the rheological, mechanical, pH and ion-eluting properties of their corresponding glass polyalkenoate cements. Materials Research Express. 2021. 8, 065401.	1.6	0