
Fabian Blank

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011255/publications.pdf Version: 2024-02-01

FARIAN RIANK

#	Article	IF	CITATIONS
1	Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein Journal of Nanotechnology, 2014, 5, 1625-1636.	1.5	386
2	Engineering an in vitro air-blood barrier by 3D bioprinting. Scientific Reports, 2015, 5, 7974.	1.6	281
3	Biodistribution, Clearance, and Longâ€Term Fate of Clinically Relevant Nanomaterials. Advanced Materials, 2018, 30, e1704307.	11.1	276
4	<i>In vitro</i> models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 1075-1089.	1.5	171
5	Size-Dependent Uptake of Particles by Pulmonary Antigen-Presenting Cell Populations and Trafficking to Regional Lymph Nodes. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 67-77.	1.4	105
6	Biomedical nanoparticles modulate specific CD4 ⁺ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology, 2011, 5, 606-621.	1.6	88
7	Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 633-644.	1.7	78
8	Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Particle and Fibre Toxicology, 2012, 9, 17.	2.8	76
9	Aerosol Delivery of Functionalized Gold Nanoparticles Target and Activate Dendritic Cells in a 3D Lung Cellular Model. ACS Nano, 2017, 11, 375-383.	7.3	55
10	Opportunities and challenges of the pulmonary route for vaccination. Expert Opinion on Drug Delivery, 2011, 8, 547-563.	2.4	50
11	Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation. International Journal of Nanomedicine, 2014, 9, 3885.	3.3	50
12	Interaction of biomedical nanoparticles with the pulmonary immune system. Journal of Nanobiotechnology, 2017, 15, 6.	4.2	45
13	Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4 + T Cell Proliferation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1815-1826.	1.7	42
14	Silent infection of human dendritic cells by African and Asian strains of Zika virus. Scientific Reports, 2018, 8, 5440.	1.6	37
15	A Triple Co-Culture Model of the Human Respiratory Tract to Study Immune-Modulatory Effects of Liposomes and Virosomes. PLoS ONE, 2016, 11, e0163539.	1.1	34
16	Current <i>in vitro</i> approaches to assess nanoparticle interactions with lung cells. Nanomedicine, 2016, 11, 2457-2469.	1.7	31
17	SARS-CoV-2 can infect and propagate in human placenta explants. Cell Reports Medicine, 2021, 2, 100456.	3.3	29
18	Characterization of pediatric cystic fibrosis airway epithelial cell cultures at the air-liquid interface obtained by non-invasive nasal cytology brush sampling. Respiratory Research, 2017, 18, 215.	1.4	21

FABIAN BLANK

#	Article	IF	CITATIONS
19	Pulmonary Delivery of Virosome-Bound Antigen Enhances Antigen-Specific CD4+ T Cell Proliferation Compared to Liposome-Bound or Soluble Antigen. Frontiers in Immunology, 2017, 8, 359.	2.2	19
20	Acute effects of multi-walled carbon nanotubes on primary bronchial epithelial cells from COPD patients. Nanotoxicology, 2018, 12, 699-711.	1.6	15
21	CD90 ⁺ CD146 ⁺ identifies a pulmonary mesenchymal cell subtype with both immune modulatory and perivascular-like function in postnatal human lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L813-L830.	1.3	15
22	Restricted Aeroallergen Access to Airway Mucosal Dendritic Cells In Vivo Limits Allergen-Specific CD4+ T Cell Proliferation during the Induction of Inhalation Tolerance. Journal of Immunology, 2011, 187, 4561-4570.	0.4	14
23	Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an <i>in vivo</i> model of chronic obstructive lung disease. Nanotoxicology, 2020, 14, 77-96.	1.6	12
24	Virosome-bound antigen enhances DC-dependent specific CD4+ T cell stimulation, inducing a Th1 and Treg profile in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1725-1737.	1.7	10
25	Human Bronchial Epithelial Cells Induce CD141/CD123/DC-SIGN/FLT3 Monocytes That Promote Allogeneic Th17 Differentiation. Frontiers in Immunology, 2017, 8, 447.	2.2	10
26	Role of the plasma cascade systems in ischemia/reperfusion injury of bone. Bone, 2017, 97, 278-286.	1.4	8
27	Functional differences in airway dendritic cells determine susceptibility to IgEâ€sensitization. Immunology and Cell Biology, 2018, 96, 316-329.	1.0	7
28	EpCAM ⁺ CD73 ⁺ mark epithelial progenitor cells in postnatal human lung and are associated with pathogenesis of pulmonary disease including lung adenocarcinoma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L794-L809.	1.3	7
29	Peritumoral CD90+CD73+ cells possess immunosuppressive features in human non-small cell lung cancer. EBioMedicine, 2021, 73, 103664.	2.7	5
30	Identification and Characterization of a Dendritic Cell Precursor in Parenchymal Lung Tissue. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 353-361.	1.4	3
31	Stem cell secretome attenuates acute rejection in rat lung allotransplant. Interactive Cardiovascular and Thoracic Surgery, 2019, 28, 812-818.	0.5	3
32	Encoded Particles: Fluorescence-Encoded Gold Nanoparticles: Library Design and Modulation of Cellular Uptake into Dendritic Cells (Small 7/2014). Small, 2014, 10, 1440-1440.	5.2	1