Maurizio Ricci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solid lipid nanoparticles for targeted brain drug deliveryâ~†. Advanced Drug Delivery Reviews, 2007, 59, 454-477.	6.6	432
2	Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation. International Journal of Pharmaceutics, 2008, 357, 295-304.	2.6	229
3	Development of mucoadhesive patches for buccal administration of ibuprofen. Journal of Controlled Release, 2004, 99, 73-82.	4.8	208
4	Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. Journal of Controlled Release, 2004, 95, 521-533.	4.8	153
5	Evaluation of Indomethacin Percutaneous Absorption from Nanostructured Lipid Carriers (NLC): In Vitro and In Vivo Studies. Journal of Pharmaceutical Sciences, 2005, 94, 1149-1159.	1.6	102
6	Anionic clays for sunscreen agent safe use: Photoprotection, photostability and prevention of their skin penetration. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62, 185-193.	2.0	96
7	Ketoprofen controlled release from composite microcapsules for cell encapsulation: Effect on post-transplant acute inflammation. Journal of Controlled Release, 2005, 107, 395-407.	4.8	83
8	Ketoprofen poly(lactide-co-glycolide) physical interaction. AAPS PharmSciTech, 2007, 8, E78-E85.	1.5	76
9	Chitosan films containing mesoporous SBA-15 supported silver nanoparticles for wound dressing. Journal of Materials Chemistry B, 2014, 2, 6054.	2.9	75
10	Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. Journal of Colloid and Interface Science, 2017, 491, 265-272.	5.0	70
11	Preparation of large porous biodegradable microspheres by using a simple double-emulsion method for capreomycin sulfate pulmonary delivery. International Journal of Pharmaceutics, 2007, 333, 103-111.	2.6	69
12	Chitosan and a modified chitosan as agents to improve performances of mucoadhesive vaginal gels. Colloids and Surfaces B: Biointerfaces, 2008, 66, 141-145.	2.5	69
13	Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery. AAPS PharmSciTech, 2004, 5, 1-9.	1.5	66
14	MCM-41 for furosemide dissolution improvement. Microporous and Mesoporous Materials, 2012, 147, 343-349.	2.2	66
15	Analytical characterization of a ferulic acid/γ-cyclodextrin inclusion complex. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 875-881.	1.4	64
16	Role of mesoporous silicates on carbamazepine dissolution rate enhancement. Microporous and Mesoporous Materials, 2008, 113, 445-452.	2.2	64
17	Artificial apolipoprotein corona enables nanoparticle brain targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 429-438.	1.7	63
18	Use of SBA-15 for furosemide oral delivery enhancement. European Journal of Pharmaceutical Sciences, 2012, 46, 43-48.	1.9	60

#	Article	IF	CITATIONS
19	Biocompatible alginate silica supported silver nanoparticles composite films for wound dressing with antibiofilm activity. Materials Science and Engineering C, 2020, 112, 110863.	3.8	60
20	Development of a spray-drying method for the formulation of respirable microparticles containing ofloxacin–palladium complex. International Journal of Pharmaceutics, 2013, 440, 273-282.	2.6	58
21	Long-term delivery of superoxide dismutase and catalase entrapped in poly(lactide-co-glycolide) microspheres: In vitro effects on isolated neonatal porcine pancreatic cell clusters. Journal of Controlled Release, 2005, 107, 65-77.	4.8	56
22	Novel composite microparticles for protein stabilization and delivery. European Journal of Pharmaceutical Sciences, 2009, 36, 226-234.	1.9	54
23	Development of a scalable procedure for fine calcium alginate particle preparation. Chemical Engineering Journal, 2010, 160, 363-369.	6.6	54
24	Development of liposomal capreomycin sulfate formulations: Effects of formulation variables on peptide encapsulation. International Journal of Pharmaceutics, 2006, 311, 172-181.	2.6	52
25	Evaluation of in vitro percutaneous absorption of lorazepam and clonazepam from hydro-alcoholic gel formulations. International Journal of Pharmaceutics, 2001, 228, 79-87.	2.6	48
26	Delivering Drugs to the Central Nervous System: A Medicinal Chemistry or a Pharmaceutical Technology Issue?. Current Medicinal Chemistry, 2006, 13, 1757-1775.	1.2	48
27	Lipid nanoparticles for brain targeting I. Formulation optimization. International Journal of Pharmaceutics, 2011, 419, 287-295.	2.6	48
28	Lipid nanoparticles for brain targeting III. Long-term stability and in vivo toxicity. International Journal of Pharmaceutics, 2013, 454, 316-323.	2.6	45
29	Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. Journal of Pharmaceutical Investigation, 2019, 49, 381-404.	2.7	44
30	Capreomycin supergenerics for pulmonary tuberculosis treatment: Preparation, in vitro, and in vivo characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 388-395.	2.0	43
31	Leucinostatin D. A novel peptide antibiotic from Paecilomyces marquandii Journal of Antibiotics, 1987, 40, 130-133.	1.0	42
32	Potential prodrugs of non-steroidal anti-inflammatory agents for targeted drug delivery to the CNS. European Journal of Medicinal Chemistry, 2004, 39, 715-727.	2.6	41
33	Leucinostatins H and K, two novel peptide antibiotics with tertiay amine-oxide terminal group from Paecilomyces marquandii Isolation, structure and biological activity Journal of Antibiotics, 1987, 40, 714-716.	1.0	39
34	Antimicrobial Nonapeptide Leucinostatin A-Dependent Effects on the Physical Properties of Phospholipid Model Membranes. Journal of Colloid and Interface Science, 2000, 226, 222-230.	5.0	39
35	Mesoporous Silicate MCM-41 as a Particulate Carrier for Octyl Methoxycinnamate: Sunscreen Release and Photostability. Journal of Pharmaceutical Sciences, 2013, 102, 1468-1475.	1.6	39
36	Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan		39

metabolite., 2022, 10, e003725.

39

#	Article	IF	CITATIONS
37	Fighting tuberculosis: old drugs, new formulations. Expert Opinion on Drug Delivery, 2009, 6, 977-993.	2.4	38
38	Bioadhesive polymeric films based on usnic acid for burn wound treatment: Antibacterial and cytotoxicity studies. Colloids and Surfaces B: Biointerfaces, 2019, 178, 488-499.	2.5	37
39	Development and characterization of mucoadhesive-thermoresponsive gels for the treatment of oral mucosa diseases. European Journal of Pharmaceutical Sciences, 2020, 142, 105125.	1.9	37
40	Folic acid-layered double hydroxides hybrids in skin formulations: Technological, photochemical and in vitro cytotoxicity on human keratinocytes and fibroblasts. Applied Clay Science, 2019, 168, 382-395.	2.6	35
41	Improved function of rat islets upon co-microencapsulation with Sertoli's cells in alginate/poly-L-ornithine. AAPS PharmSciTech, 2001, 2, 48-54.	1.5	34
42	Dynamic behavior of a spring-powered micronozzle needle-free injector. International Journal of Pharmaceutics, 2015, 491, 91-98.	2.6	34
43	Lipid nanoparticles for brain targeting II. Technological characterization. Colloids and Surfaces B: Biointerfaces, 2013, 110, 130-137.	2.5	32
44	The nonapeptide leucinostatin A acts as a weak ionophore and as an immunosuppressant on T lymphocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1221, 125-132.	1.9	31
45	Preparation and in vitro and in vivo characterization of composite microcapsules for cell encapsulation. International Journal of Pharmaceutics, 2006, 324, 27-36.	2.6	31
46	Capreomycin inhalable powders prepared with an innovative spray-drying technique. International Journal of Pharmaceutics, 2014, 469, 132-139.	2.6	31
47	Bioadhesive Polymeric Films Based on Red Onion Skins Extract for Wound Treatment: An Innovative and Eco-Friendly Formulation. Molecules, 2020, 25, 318.	1.7	30
48	Physicochemical characterization and release mechanism of a novel prednisone biodegradable microsphere formulation. Journal of Pharmaceutical Sciences, 2008, 97, 303-317.	1.6	28
49	Development of Novel Indole-3-Aldehyde–Loaded Gastro-Resistant Spray-Dried Microparticles for Postbiotic Small Intestine Local Delivery. Journal of Pharmaceutical Sciences, 2018, 107, 2341-2353.	1.6	28
50	Leucinostatin-A loaded nanospheres: characterization and in vivo toxicity and efficacy evaluation. International Journal of Pharmaceutics, 2004, 275, 61-72.	2.6	25
51	Simple and scalable method for peptide inhalable powder production. European Journal of Pharmaceutical Sciences, 2010, 39, 53-58.	1.9	25
52	Montmorillonite as an agent for drug photostability. Journal of Materials Chemistry, 2012, 22, 22743.	6.7	25
53	Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics, 2021, 13, 324.	2.0	25
54	Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis. Mediators of Inflammation, 2018, 2018, 1-7.	1.4	24

#	Article	IF	CITATIONS
55	Alginate beads as a carrier for omeprazole/SBA-15 inclusion compound: A step towards the development of personalized paediatric dosage forms. Carbohydrate Polymers, 2015, 133, 464-472.	5.1	23
56	Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis. Cells, 2021, 10, 1622.	1.8	23
57	Unilamellar vesicles as potential capreomycin sulfate carriers: Preparation and physicochemical characterization. AAPS PharmSciTech, 2003, 4, 549-560.	1.5	22
58	UV spectroscopy and reverse-phase HPLC as novel methods to determine Capreomycin of liposomal fomulations. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36, 249-255.	1.4	22
59	Preparation and characterization of polymeric microparticles loaded with Moringa oleifera leaf extract for exuding wound treatment. International Journal of Pharmaceutics, 2020, 587, 119700.	2.6	22
60	Enteric formulated indole-3-carboxaldehyde targets the aryl hydrocarbon receptor for protection in a murine model of metabolic syndrome. International Journal of Pharmaceutics, 2021, 602, 120610.	2.6	22
61	Influence of Compression Force on The Behavior of Mucoadhesive Buccal Tablets. AAPS PharmSciTech, 2008, 9, 274-281.	1.5	20
62	Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline?. Pharmaceutics, 2020, 12, 624.	2.0	20
63	Synthesis, characterization and <i>in vitro</i> extracellular and intracellular activity against <i>Mycobacterium tuberculosis</i> infection of new second-line antitubercular drug-palladium complexes. Journal of Pharmacy and Pharmacology, 2013, 66, 106-121.	1.2	19
64	The Influence of Feedstock and Process Variables on the Encapsulation of Drug Suspensions by Sprayâ€Drying in Fast Drying Regime: The Case of Novel Antitubercular Drug–Palladium Complex Containing Polymeric Microparticles. Journal of Pharmaceutical Sciences, 2014, 103, 1255-1268.	1.6	18
65	Powder, capsule and device: An imperative ménage à trois for respirable dry powders. International Journal of Pharmaceutics, 2015, 494, 40-48.	2.6	18
66	Development of sodium carboxymethyl cellulose based polymeric microparticles for in situ hydrogel wound dressing formation. International Journal of Pharmaceutics, 2021, 602, 120606.	2.6	18
67	Biodegradable composite porous poly(<scp>dl</scp> -lactide- <i>co</i> glycolide) scaffold supports mesenchymal stem cell differentiation and calcium phosphate deposition. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 219-229.	1.9	17
68	Lipid Nanoparticles for Drug Delivery to the Brain: <i>In Vivo Veritas</i> . Journal of Biomedical Nanotechnology, 2009, 5, 344-350.	0.5	16
69	The real value of novel particulate carriers for sunscreen formulation. Expert Review of Dermatology, 2011, 6, 509-517.	0.3	16
70	Conformal polymer coatings for pancreatic islets transplantation. International Journal of Pharmaceutics, 2013, 440, 141-147.	2.6	16
71	The long and winding road to inhaled TB therapy: not only the bug's fault. Drug Development and Industrial Pharmacy, 2017, 43, 347-363.	0.9	15
72	Targeted Drug Delivery Technologies Potentiate the Overall Therapeutic Efficacy of an Indole Derivative in a Mouse Cystic Fibrosis Setting. Cells, 2021, 10, 1601.	1.8	15

#	Article	IF	CITATIONS
73	Drug delivery system innovation and Health Technology Assessment: Upgrading from Clinical to Technological Assessment. International Journal of Pharmaceutics, 2015, 495, 1005-1018.	2.6	14
74	The strategic relevance of manufacturing technology: An overall quality concept to promote innovation preventing drug shortage. International Journal of Pharmaceutics, 2017, 516, 144-157.	2.6	14
75	D-leucine microparticles as an excipient to improve the aerosolization performances of dry powders for inhalation. European Journal of Pharmaceutical Sciences, 2019, 130, 54-64.	1.9	14
76	Bioactive Long-Term Release from Biodegradable Microspheres Preserves Implanted ALG-PLO-ALG Microcapsules from In Vivo Response to Purified Alginate. Pharmaceutical Research, 2010, 27, 285-295.	1.7	13
77	Oxybenzone Entrapped in Mesoporous Silicate MCM-41. Journal of Pharmaceutical Innovation, 2013, 8, 212-217.	1.1	13
78	Development and Characterization of New Topical Hydrogels Based on Alpha Lipoic Acid—Hydrotalcite Hybrids. Cosmetics, 2019, 6, 35.	1.5	13
79	Hazelnut Shells as Source of Active Ingredients: Extracts Preparation and Characterization. Molecules, 2021, 26, 6607.	1.7	13
80	Taxifolin stability: In silico prediction and inÂvitro degradation with HPLC-UV/UPLC–ESI-MS monitoring. Journal of Pharmaceutical Analysis, 2021, 11, 232-240.	2.4	12
81	Emulgel Loaded with Flaxseed Extracts as New Therapeutic Approach in Wound Treatment. Pharmaceutics, 2021, 13, 1107.	2.0	12
82	Wound Dressing: Combination of Acacia Gum/PVP/Cyclic Dextrin in Bioadhesive Patches Loaded with Grape Seed Extract. Pharmaceutics, 2022, 14, 485.	2.0	12
83	New Oligoethylene Ester Derivatives of 5â€iodoâ€2â€2â€deoxyuridine as Dermal Prodrugs: Synthesis, Physicochemical Properties, and Skin Permeation Studies. Journal of Pharmaceutical Sciences, 2002, 91, 171-179.	1.6	11
84	β-cyclodextrin hinders PLGA plasticization during microparticle manufacturing. Journal of Drug Delivery Science and Technology, 2015, 30, 375-383.	1.4	10
85	Reshaping antibiotics through hydrophobic drug-bile acid ionic complexation enhances activity against Staphylococcus aureus biofilms. International Journal of Pharmaceutics, 2017, 528, 144-162.	2.6	10
86	Exploring the Nano Spray-Drying Technology as an Innovative Manufacturing Method for Solid Lipid Nanoparticle Dry Powders. AAPS PharmSciTech, 2019, 20, 19.	1.5	9
87	Polymeric Bioadhesive Patch Based on Ketoprofen-Hydrotalcite Hybrid for Local Treatments. Pharmaceutics, 2020, 12, 733.	2.0	9
88	Development and in vitro-in vivo performances of an inhalable indole-3-carboxaldehyde dry powder to target pulmonary inflammation and infection. International Journal of Pharmaceutics, 2021, 607, 121004.	2.6	9
89	Evaluation and Optimization of the Conditions for an Improved Ferulic Acid Intercalation into a Synthetic Lamellar Anionic Clay. Pharmaceutical Research, 2006, 23, 604-613.	1.7	7
90	Improved Achiral and Chiral HPLC-UV Analysis of Ruxolitinib in Two Different Drug Formulations. Separations, 2020, 7, 47.	1.1	7

#	Article	IF	CITATIONS
91	Bioadhesive patches based on carboxymethyl cellulose/polyvinylpyrrolidone/bentonite composites and Soluplus® for skin administration of poorly soluble molecules. Applied Clay Science, 2022, 216, 106377.	2.6	7
92	Chlorhexidine-loaded functionalized mesoporous MCM-41 poly(methylmethacrylate) based composites with Candida antibiofilm activity. RSC Advances, 2015, 5, 84827-84835.	1.7	6
93	Exploring Taxifolin Polymorphs: Insights on Hydrate and Anhydrous Forms. Pharmaceutics, 2021, 13, 1328.	2.0	6
94	Pharmaceutically Active Microbial AhR Agonists as Innovative Biodrugs in Inflammation. Pharmaceuticals, 2022, 15, 336.	1.7	5
95	MgAl and ZnAl-Hydrotalcites as Materials for Cosmetic and Pharmaceutical Formulations: Study of Their Cytotoxicity on Different Cell Lines. Pharmaceuticals, 2022, 15, 784.	1.7	5
96	Liposome-based formulations for the antibiotic nonapeptide Leucinostatin A: Fourier transform infrared spectroscopy characterization and in vivo toxicologic study. AAPS PharmSciTech, 2000, 1, 9-19.	1.5	4
97	Liposome-based formulations for the antibiotic nonapeptide Leucinostatin A: Fourier transform infrared spectroscopy characterization and in vivo toxicologic study. AAPS PharmSciTech, 2000, 1, 9-19.	1.5	3
98	Tackling Immune Pathogenesis of COVID-19 through Molecular Pharmaceutics. Pharmaceutics, 2021, 13, 494.	2.0	3
99	Antibody-targeted leucinostatin A. Journal of Controlled Release, 1994, 32, 37-44.	4.8	2
100	Flow nanoprecipitation of size-controlled <scp>d</scp> -leucine nanoparticles for spray-drying formulations. Reaction Chemistry and Engineering, 2019, 4, 1861-1868.	1.9	1
101	A Novel Stabilizing Approach to Improve the Manufacturing of Biodegradable Microparticles Entrapping Plasticizing Active Molecules: the Case of 4-Methoxychalcone. Journal of Pharmaceutical Innovation, 2019, 14, 159-175.	1.1	1
102	Response to Comment on Blasi et al. (2011) "Lipid nanoparticles for brain targeting I. Formulation optimization― International Journal of Pharmaceutics, 2012, 439, 171-174.	2.6	0
103	Exploring Taxifolin Polymorphs: Insights on Hydrate and Anhydrous Forms. Pharmaceutics, 2021, 13, .	2.0	0