
Kai Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4011010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porcine circovirus type 2 infection inhibits the activation of type I interferon signaling via capsid protein and host gC1qR. Veterinary Microbiology, 2022, 266, 109354.	0.8	9
2	Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell, 2022, 185, 995-1007.e18.	13.5	26
3	A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. Npj Vaccines, 2022, 7, 47.	2.9	6
4	Ubiquitination of Ebola virus VP35 at lysine 309 regulates viral transcription and assembly. PLoS Pathogens, 2022, 18, e1010532.	2.1	6
5	What Do Antibody Studies Tell Us about Viral Infections?. Pathogens, 2022, 11, 560.	1.2	Ο
6	A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity, 2021, 54, 815-828.e5.	6.6	34
7	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	2.9	22
8	Antibody Responses to SARS-CoV-2 Following an Outbreak Among Marine Recruits With Asymptomatic or Mild Infection. Frontiers in Immunology, 2021, 12, 681586.	2.2	6
9	High-resolution asymmetric structure of a Fab–virus complex reveals overlap with the receptor binding site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2025452118.	3.3	12
10	Proteo-Genomic Analysis Identifies Two Major Sites of Vulnerability on Ebolavirus Glycoprotein for Neutralizing Antibodies in Convalescent Human Plasma. Frontiers in Immunology, 2021, 12, 706757.	2.2	4
11	Pan-ebolavirus protective therapy by two multifunctional human antibodies. Cell, 2021, 184, 5593-5607.e18.	13.5	21
12	Editorial: Evolution & Genomic Adaptation of Emerging and Re-emerging RNA Viruses. Frontiers in Microbiology, 2021, 12, 777257.	1.5	0
13	Discovery of Marburg virus neutralizing antibodies from virus-naÃ ⁻ ve human antibody repertoires using large-scale structural predictions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31142-31148.	3.3	10
14	Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.	6.6	71
15	Non-neutralizing Antibodies from a Marburg Infection Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other Antibodies. Cell Host and Microbe, 2020, 27, 976-991.e11.	5.1	43
16	Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nature Communications, 2019, 10, 1788.	5.8	24
17	Structural basis of broad ebolavirus neutralization by a human survivor antibody. Nature Structural and Molecular Biology, 2019, 26, 204-212.	3.6	30
18	Antibody-Mediated Protective Mechanisms Induced by a Trivalent Parainfluenza Virus-Vectored Ebolavirus Vaccine. Journal of Virology, 2019, 93, .	1.5	13

Kai Huang

#	Article	IF	CITATIONS
19	The Marburgvirus-Neutralizing Human Monoclonal Antibody MR191 Targets a Conserved Site to Block Virus Receptor Binding. Cell Host and Microbe, 2018, 23, 101-109.e4.	5.1	40
20	Complex and Dynamic Interactions between Parvovirus Capsids, Transferrin Receptors, and Antibodies Control Cell Infection and Host Range. Journal of Virology, 2018, 92, .	1.5	29
21	Multifunctional Pan-ebolavirus Antibody Recognizes a Site of Broad Vulnerability on the Ebolavirus Glycoprotein. Immunity, 2018, 49, 363-374.e10.	6.6	61
22	Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region. Nature Microbiology, 2018, 3, 670-677.	5.9	68
23	Asymmetric antiviral effects of ebolavirus antibodies targeting glycoprotein stem and glycan cap. PLoS Pathogens, 2018, 14, e1007204.	2.1	16
24	Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Reports, 2018, 24, 1802-1815.e5.	2.9	64
25	OUP accepted manuscript. Journal of Infectious Diseases, 2018, 218, S418-S422.	1.9	6
26	Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. Journal of Virology, 2017, 91, .	1.5	23
27	Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology, 2017, 500, 1-10.	1.1	28
28	Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus. Journal of Virology, 2016, 90, 9733-9742.	1.5	27
29	Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus. Veterinary Microbiology, 2015, 175, 244-256.	0.8	39
30	Equine and Canine Influenza H3N8 Viruses Show Minimal Biological Differences Despite Phylogenetic Divergence. Journal of Virology, 2015, 89, 6860-6873.	1.5	36
31	Contact Heterogeneity, Rather Than Transmission Efficiency, Limits the Emergence and Spread of Canine Influenza Virus. PLoS Pathogens, 2014, 10, e1004455.	2.1	43
32	Establishment and Lineage Replacement of H6 Influenza Viruses in Domestic Ducks in Southern China. Journal of Virology, 2012, 86, 6075-6083.	1.5	77
33	Influenza virus surveillance in migratory ducks and sentinel ducks at Poyang Lake, China. Influenza and Other Respiratory Viruses, 2011, 5, 65-8.	1.5	12
34	Establishment of an H6N2 Influenza Virus Lineage in Domestic Ducks in Southern China. Journal of Virology, 2010, 84, 6978-6986.	1.5	83
35	PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research, 2010, 38, W609-W614.	6.5	637
36	Characterization of Avian Influenza Viruses A (H5N1) from Wild Birds, Hong Kong, 2004–2008. Emerging Infectious Diseases, 2009, 15, 402-407.	2.0	94

Kai Huang

#	Article	IF	CITATIONS
37	Systemic infection of avian influenza A virus H5N1 subtype in humans. Human Pathology, 2009, 40, 735-739.	1.1	64
38	The development and genetic diversity of H5N1 influenza virus in China, 1996–2006. Virology, 2008, 380, 243-254.	1.1	140
39	Characterization of Low-Pathogenic H5 Subtype Influenza Viruses from Eurasia: Implications for the Origin of Highly Pathogenic H5N1 Viruses. Journal of Virology, 2007, 81, 7529-7539.	1.5	114
40	Establishment of Influenza A Virus (H6N1) in Minor Poultry Species in Southern China. Journal of Virology, 2007, 81, 10402-10412.	1.5	106
41	Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2845-2850.	3.3	557
42	Emergence and predominance of an H5N1 influenza variant in China. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16936-16941.	3.3	279
43	Asymmetric and Non-Stoichiometric Recognition Results in Broad Protection Against Ebolaviruses by a Two-Antibody Cocktail. SSRN Electronic Journal, 0, , .	0.4	0
44	A Fc-Engineering Approach to Define Functional Humoral Correlates of Immunity Against Ebola Virus. SSRN Electronic Journal, 0, , .	0.4	0