Suvodip Mukherjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4010994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping the cosmic expansion history from LIGO-Virgo-KAGRA in synergy with DESI and SPHEREx. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2782-2795.	4.4	25
2	Prospects of discovering subsolar primordial black holes using the stochastic gravitational wave background from third-generation detectors. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6218-6224.	4.4	22
3	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	6.7	350
4	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
5	GLADE+Â: an extended galaxy catalogue for multimessenger searches with advanced gravitational-wave detectors. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1403-1411.	4.4	25
6	Testing the general theory of relativity using gravitational wave propagation from dark standard sirens. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1136-1144.	4.4	50
7	Velocity correction for Hubble constant measurements from standard sirens. Astronomy and Astrophysics, 2021, 646, A65.	5.1	54
8	Accurate precision cosmology with redshift unknown gravitational wave sources. Physical Review D, 2021, 103, .	4.7	79
9	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
10	Impact of astrophysical binary coalescence time-scales on the rate of lensed gravitational wave events. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3751-3759.	4.4	21
11	Can we distinguish astrophysical from primordial black holes via the stochastic gravitational wave background?. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3977-3985.	4.4	50
12	On the importance of source population models for gravitational-wave cosmology. Physical Review D, 2021, 104, .	4.7	48
13	Fundamental physics using the temporal gravitational wave background. Physical Review D, 2021, 104, .	4.7	11
14	Inferring the lensing rate of LIGO–Virgo sources from the stochastic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2451-2466.	4.4	26
15	Discovering Axion-Like Particles Using Cosmic Microwave Background as the Backlight. Astronomy Reports, 2021, 65, 995-1001.	0.9	0
16	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
17	Multimessenger tests of gravity with weakly lensed gravitational waves. Physical Review D, 2020, 101, .	4.7	47
18	Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1956-1970.	4.4	85

Suvodip Mukherjee

#	Article	IF	CITATIONS
19	A new probe of axion-like particles: CMB polarization distortions due to cluster magnetic fields. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 032-032.	5.4	15
20	Inevitable imprints of patchy reionization on the cosmic microwave background anisotropy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 232-246.	4.4	15
21	Cosmic microwave background constraints on a physical model of reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 501, L7-L11.	3.3	16
22	Constraints on non-resonant photon-axion conversion from the Planck satellite data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	5.4	10
23	Is patchy reionization an obstacle in detecting the primordial gravitational wave signal?. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2042-2049.	4.4	9
24	Polarized anisotropic spectral distortions of the CMB: galactic and extragalactic constraints on photon-axion conversion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 045-045.	5.4	20
25	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
26	FSD: Frequency Space Differential measurement of CMB spectral distortions. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4473-4482.	4.4	5
27	Time-dependence of the astrophysical stochastic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	40