Damya Laoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4010822/publications.pdf

Version: 2024-02-01

50 papers 5,981 citations

30 h-index 243625 44 g-index

52 all docs 52 docs citations

times ranked

52

10030 citing authors

#	Article	IF	CITATIONS
1	Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. International Journal of Molecular Sciences, 2022, 23, 904.	4.1	25
2	Heterogeneity and function of macrophages in the breast during homeostasis and cancer. International Review of Cell and Molecular Biology, 2022, 367, 149-182.	3.2	2
3	Therapeutic depletion of CCR8 ⁺ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy., 2021, 9, e001749.		91
4	Monocytic myeloid-derived suppressor cells home to tumor-draining lymph nodes via CCR2 and locally modulate the immune response. Cellular Immunology, 2021, 362, 104296.	3.0	7
5	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, 2021, 7, .	10.3	26
6	Abstract 1732: Investigation of the best therapeutic approach to target CCR8 expressed on tumor regulatory T cells to boost anti-tumor immune responses. , 2021, , .		0
7	IL1Î ² Promotes Immune Suppression in the Tumor Microenvironment Independent of the Inflammasome and Gasdermin D. Cancer Immunology Research, 2021, 9, 309-323.	3.4	48
8	Transcutaneous Vagal Nerve Stimulation Alone or in Combination With Radiotherapy Stimulates Lung Tumor Infiltrating Lymphocytes But Fails to Suppress Tumor Growth. Frontiers in Immunology, 2021, 12, 772555.	4.8	4
9	Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Reports, 2021, 37, 110171.	6.4	69
10	The Colony Stimulating Factor-1 Receptor (CSF-1R)-Mediated Regulation of Microglia/Macrophages as a Target for Neurological Disorders (Glioma, Stroke). Frontiers in Immunology, 2021, 12, 787307.	4.8	21
11	Systemic Reprogramming of Monocytes in Cancer. Frontiers in Oncology, 2020, 10, 1399.	2.8	68
12	Targeting Neuropilin-1 with Nanobodies Reduces Colorectal Carcinoma Development. Cancers, 2020, 12, 3582.	3.7	23
13	A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Research, 2020, 30, 745-762.	12.0	391
14	IFNÎ ³ signaling response in peripheral blood monocytes: A new prognostic biomarker for breast cancer?. EBioMedicine, 2020, 53, 102690.	6.1	0
15	Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition., 2019, 7, 216.		56
16	Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers, 2019, 11, 1255.	3.7	70
17	High Salt Inhibits Tumor Growth by Enhancing Anti-tumor Immunity. Frontiers in Immunology, 2019, 10, 1141.	4.8	34
18	Unleashing Tumour-Dendritic Cells to Fight Cancer by Tackling Their Three A's: Abundance, Activation and Antigen-Delivery. Cancers, 2019, 11, 670.	3.7	15

#	Article	IF	Citations
19	Clinical Translation of [68Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT Imaging of Protumorigenic Macrophages. Molecular Imaging and Biology, 2019, 21, 898-906.	2.6	69
20	Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. , 2019, 7, $10.$		66
21	Adoptive Transfer of Monocytes Sorted from Bone Marrow. Bio-protocol, 2019, 9, e3134.	0.4	0
22	Myeloid cell heterogeneity in cancer: not a single cell alike. Cellular Immunology, 2018, 330, 188-201.	3.0	127
23	Beyond the Mâ€ <scp>CSF</scp> receptor – novel therapeutic targets in tumorâ€associated macrophages. FEBS Journal, 2018, 285, 777-787.	4.7	26
24	Diamonds in the Rough: Harnessing Tumor-Associated Myeloid Cells for Cancer Therapy. Frontiers in Immunology, 2018, 9, 2250.	4.8	35
25	Exploiting tumor-associated dendritic cell heterogeneity for novel cancer therapies. Journal of Leukocyte Biology, 2017, 102, 317-324.	3.3	32
26	Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Science Translational Medicine, 2017, 9, .	12.4	422
27	Novel insights in the regulation and function of macrophages in the tumor microenvironment. Current Opinion in Oncology, 2017, 29, 55-61.	2.4	53
28	CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus. Gut, 2017, 66, 2098-2109.	12.1	78
29	The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nature Communications, 2016, 7, 13720.	12.8	217
30	Suppression of microRNA activity amplifies IFN- \hat{l}^3 -induced macrophage activation and promotes anti-tumour immunity. Nature Cell Biology, 2016, 18, 790-802.	10.3	214
31	M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Research, 2016, 76, 35-42.	0.9	184
32	Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 23-34.	7.4	90
33	E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo. Scientific Reports, 2015, 5, 12599.	3.3	29
34	Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages. PLoS Pathogens, 2015, 11, e1004873.	4.7	45
35	PET Imaging of Macrophage Mannose Receptor–Expressing Macrophages in Tumor Stroma Using ¹⁸ F-Radiolabeled Camelid Single-Domain Antibody Fragments. Journal of Nuclear Medicine, 2015, 56, 1265-1271.	5.0	139
36	Hypoxia and tumor-associated macrophages. Oncolmmunology, 2014, 3, e27561.	4.6	30

#	Article	IF	CITATIONS
37	Targeting Cell-Intrinsic and Cell-Extrinsic Mechanisms of Intravasation in Invasive Breast Cancer. Science Signaling, 2014, 7, pe28.	3.6	2
38	Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression. Frontiers in Immunology, 2014, 5, 489.	4.8	163
39	Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 466-479.	1.7	11
40	Mechanisms Driving Macrophage Diversity and Specialization in Distinct Tumor Microenvironments and Parallelisms with Other Tissues. Frontiers in Immunology, 2014, 5, 127.	4.8	162
41	Tumor Hypoxia Does Not Drive Differentiation of Tumor-Associated Macrophages but Rather Fine-Tunes the M2-like Macrophage Population. Cancer Research, 2014, 74, 24-30.	0.9	348
42	Molecular Profiling Reveals a Tumor-Promoting Phenotype of Monocytes and Macrophages in Human Cancer Progression. Immunity, 2014, 41, 815-829.	14.3	240
43	Tumorâ€induced myeloidâ€derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell activation events. European Journal of Immunology, 2013, 43, 2930-2942.	2.9	73
44	Unsuspected allies: Chemotherapy teams up with immunity to fight cancer. European Journal of Immunology, 2013, 43, 2538-2542.	2.9	7
45	Impeding Macrophage Entry into Hypoxic Tumor Areas by Sema3A/Nrp1 Signaling Blockade Inhibits Angiogenesis and Restores Antitumor Immunity. Cancer Cell, 2013, 24, 695-709.	16.8	505
46	Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective <i>In Vivo</i> Imaging of Tumor-Associated Macrophages. Cancer Research, 2012, 72, 4165-4177.	0.9	263
47	Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology, 2012, 217, 1266-1272.	1.9	38
48	Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site. Immunobiology, 2011, 216, 1192-1202.	1.9	88
49	Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. International Journal of Developmental Biology, 2011, 55, 861-867.	0.6	255
50	Different Tumor Microenvironments Contain Functionally Distinct Subsets of Macrophages Derived from Ly6C(high) Monocytes. Cancer Research, 2010, 70, 5728-5739.	0.9	1,018