Santiago M Di Pietro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4010704/publications.pdf

Version: 2024-02-01

25 papers 1,197 citations

567281 15 h-index 24 g-index

26 all docs

26 docs citations

26 times ranked 1652 citing authors

#	Article	IF	CITATIONS
1	Syntaxin 12 and COMMD3 are new factors that function with VPS33B in the biogenesis of platelet α-granules. Blood, 2022, 139, 922-935.	1.4	9
2	Utilizing chemically induced dimerization of FKBP to analyze endocytosis by live-cell imaging in budding yeast. STAR Protocols, 2022, 3, 101323.	1.2	1
3	Flavonoids increase melanin production and reduce proliferation, migration and invasion of melanoma cells by blocking endolysosomal/melanosomal TPC2. Scientific Reports, 2021, 11, 8515.	3.3	34
4	The dynein light chain protein Tda2 functions as a dimerization engine to regulate actin capping protein during endocytosis. Molecular Biology of the Cell, 2021, 32, mbc.E21-01-0032.	2.1	8
5	Cargo-Mediated Recruitment of the Endocytic Adaptor Protein Sla1. Journal of Cell Science, 2020, 133, .	2.0	O
6	Mechanism of platelet $\hat{1}\pm$ -granule biogenesis: study of cargo transport and the VPS33B-VPS16B complex in a model system. Blood Advances, 2019, 3, 2617-2626.	5.2	18
7	The Sla1 adaptorâ€clathrin interaction regulates coat formation and progression of endocytosis. Traffic, 2018, 19, 446-462.	2.7	9
8	Reduce, reuse, recycle: a retrieval transport pathway for the membrane fusion machinery involved in melanosome biogenesis. Pigment Cell and Melanoma Research, 2017, 30, 10-12.	3.3	1
9	Novel function of a dynein light chain in actin assembly during clathrin-mediated endocytosis. Journal of Cell Biology, 2017, 216, 2565-2580.	5.2	14
10	Storage pool diseases illuminate platelet dense granule biogenesis. Platelets, 2017, 28, 138-146.	2.3	62
11	TPC2 controls pigmentation by regulating melanosome pH and size. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5622-5627.	7.1	100
12	New Regulators of Clathrin-Mediated Endocytosis Identified in <i>Saccharomyces cerevisiae</i> by Systematic Quantitative Fluorescence Microscopy. Genetics, 2015, 201, 1061-1070.	2.9	10
13	A Second Las17 Monomeric Actinâ€Binding Motif Functions in Arp2/3â€Dependent Actin Polymerization During Endocytosis. Traffic, 2015, 16, 379-397.	2.7	14
14	TPC2 mediates new mechanisms of platelet dense granule membrane dynamics through regulation of Ca ²⁺ release. Molecular Biology of the Cell, 2015, 26, 3263-3274.	2.1	40
15	Myosin Vc Interacts with Rab32 and Rab38 Proteins and Works in the Biogenesis and Secretion of Melanosomes. Journal of Biological Chemistry, 2014, 289, 33513-33528.	3.4	58
16	Cell type-specific Rab32 and Rab38 cooperate with the ubiquitous lysosome biogenesis machinery to synthesize specialized lysosome-related organelles. Small GTPases, 2013, 4, 16-21.	1.6	45
17	BLOC-2, AP-3, and AP-1 Proteins Function in Concert with Rab38 and Rab32 Proteins to Mediate Protein Trafficking to Lysosome-related Organelles. Journal of Biological Chemistry, 2012, 287, 19550-19563.	3.4	107
18	SLAC, a complex between Sla1 and Las17, regulates actin polymerization during clathrin-mediated endocytosis. Molecular Biology of the Cell, 2012, 23, 4256-4272.	2.1	50

SANTIAGO M DI PIETRO

#	Article	IF	CITATION
19	Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood, 2012, 120, 4072-4081.	1.4	88
20	<code>In vivo and in vitro Studies of Adaptor-clathrin Interaction. Journal of Visualized Experiments, 2011, , .</code>	0.3	8
21	Regulation of clathrin adaptor function in endocytosis: novel role for the SAM domain. EMBO Journal, 2010, 29, 1033-1044.	7.8	38
22	Structure of Sla1p homology domain 1 and interaction with the NPFxD endocytic internalization motif. EMBO Journal, 2007, 26, 1963-1971.	7.8	21
23	BLOC-1 Interacts with BLOC-2 and the AP-3 Complex to Facilitate Protein Trafficking on Endosomes. Molecular Biology of the Cell, 2006, 17, 4027-4038.	2.1	201
24	The Cell Biology of Hermansky–Pudlak Syndrome: Recent Advances. Traffic, 2005, 6, 525-533.	2.7	166
25	Characterization of BLOCâ€2, a Complex Containing the Hermansky–Pudlak Syndrome Proteins HPS3, HPS5 and HPS6. Traffic, 2004, 5, 276-283.	2.7	94