List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4010430/publications.pdf Version: 2024-02-01

	10070	27587
17,338	75	110
citations	h-index	g-index
327	327	10567
docs citations	times ranked	citing authors
	17,338 citations 327 docs citations	17,33875citationsh-index327327docs citations327times ranked

#	Article	IF	CITATIONS
1	lodine emission from the reactive uptake of ozone to simulated seawater. Environmental Sciences: Processes and Impacts, 2023, 25, 254-263.	1.7	2
2	Thirdhand smoke from tobacco, e-cigarettes, cannabis, methamphetamine and cocaine: Partitioning, reactive fate, and human exposure in indoor environments. Environment International, 2022, 160, 107063.	4.8	21
3	Wildfire atmospheric chemistry: climate and air quality impacts. Trends in Chemistry, 2022, 4, 255-257.	4.4	8
4	How should we define an indoor surface?. Indoor Air, 2022, 32, e12955.	2.0	11
5	Photoreaction of biomass burning brown carbon aerosol particles. Environmental Science Atmospheres, 2022, 2, 270-278.	0.9	5
6	A New Approach to Characterizing the Partitioning of Volatile Organic Compounds to Cotton Fabric. Environmental Science & Technology, 2022, 56, 3365-3374.	4.6	13
7	Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air. Environmental Science & Technology, 2022, 56, 109-118.	4.6	13
8	Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the HyytiÃktoreal forest. Atmospheric Chemistry and Physics, 2022, 22, 5117-5145.	1.9	4
9	Behavior of Isocyanic Acid and Other Nitrogen-Containing Volatile Organic Compounds in The Indoor Environment. Environmental Science & Technology, 2022, 56, 7598-7607.	4.6	9
10	Gas- and Particle-Phase Amide Emissions from Cooking: Mechanisms and Air Quality Impacts. Environmental Science & Technology, 2022, 56, 7741-7750.	4.6	11
11	Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling. Environmental Science & Technology, 2022, 56, 7716-7728.	4.6	14
12	Characterizing the hygroscopicity of growing particles in the Canadian Arctic summer. Atmospheric Chemistry and Physics, 2022, 22, 8059-8071.	1.9	7
13	Ozonolysis Lifetime of Tetrahydrocannabinol in Thirdhand Cannabis Smoke. Environmental Science and Technology Letters, 2022, 9, 599-603.	3.9	5
14	Formation of Gas-Phase Hydrogen Peroxide via Multiphase Ozonolysis of Unsaturated Lipids. Environmental Science and Technology Letters, 2021, 8, 114-120.	3.9	24
15	Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. Environmental Science & amp; Technology, 2021, 55, 4227-4242.	4.6	88
16	Aging of Atmospheric Brown Carbon Aerosol. ACS Earth and Space Chemistry, 2021, 5, 722-748.	1.2	87
17	Elemental analysis of oxygenated organic coating on black carbon particles using a soot-particle aerosol mass spectrometer. Atmospheric Measurement Techniques, 2021, 14, 2799-2812.	1.2	5
18	Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere. Atmospheric Chemistry and Physics, 2021, 21, 6509-6539.	1.9	5

#	Article	IF	CITATIONS
19	Heterogeneous interactions between SO ₂ and organic peroxides in submicron aerosol. Atmospheric Chemistry and Physics, 2021, 21, 6647-6661.	1.9	24
20	Atmospheric ozone and pandemic lockdowns. Science, 2021, 372, 1162.8-1163.	6.0	0
21	Liquid crystal display screens as a source for indoor volatile organic compounds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
22	Spatial and temporal scales of variability for indoor air constituents. Communications Chemistry, 2021, 4, .	2.0	26
23	Modeling the Removal of Water-Soluble Trace Gases from Indoor Air via Air Conditioner Condensate. Environmental Science & Technology, 2021, 55, 10987-10993.	4.6	8
24	Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the interface of deliquesced aerosol particles. Nature Chemistry, 2021, 13, 1173-1177.	6.6	72
25	Air Quality Data Approach for Defining Wildfire Influence: Impacts on PM _{2.5} , NO ₂ , CO, and O ₃ in Western Canadian Cities. Environmental Science & Technology, 2021, 55, 13709-13717.	4.6	18
26	Indoor Air Quality Through the Lens of Outdoor Atmospheric Chemistry. , 2021, , 1-17.		0
27	Diffusion Coefficients and Mixing Times of Organic Molecules in β-Caryophyllene Secondary Organic Aerosol (SOA) and Biomass Burning Organic Aerosol (BBOA). ACS Earth and Space Chemistry, 2021, 5, 3268-3278.	1.2	6
28	Indirect Measurements of the Composition of Ultrafine Particles in the Arctic Lateâ€Winter. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035428.	1.2	2
29	The atmospheric chemistry of indoor environments. Environmental Sciences: Processes and Impacts, 2020, 22, 25-48.	1.7	107
30	Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1354-1359.	3.3	142
31	Emerging investigator series: heterogeneous OH oxidation of primary brown carbon aerosol: effects of relative humidity and volatility. Environmental Sciences: Processes and Impacts, 2020, 22, 2162-2171.	1.7	14
32	Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House. Environmental Science & Technology, 2020, 54, 13488-13497.	4.6	27
33	Ice Nucleation Ability of Tree Pollen Altered by Atmospheric Processing. ACS Earth and Space Chemistry, 2020, 4, 2312-2319.	1.2	11
34	A biogenic secondary organic aerosol source of cirrus ice nucleating particles. Nature Communications, 2020, 11, 4834.	5.8	45
35	Dark Chemistry during Bleach Cleaning Enhances Oxidation of Organics and Secondary Organic Aerosol Production Indoors. Environmental Science and Technology Letters, 2020, 7, 795-801.	3.9	35
36	Reactive Uptake of Ozone to Simulated Seawater: Evidence for Iodide Depletion. Journal of Physical Chemistry A, 2020, 124, 9844-9853.	1.1	6

#	Article	IF	CITATIONS
37	Chemical Composition, Spatial Homogeneity, and Growth of Indoor Surface Films. Environmental Science & Technology, 2020, 54, 14372-14379.	4.6	28
38	Heterogeneous Ozonolysis of Tetrahydrocannabinol: Implications for Thirdhand Cannabis Smoke. Environmental Science & Technology, 2020, 54, 14215-14223.	4.6	10
39	lce nucleating behavior of different tree pollen in the immersion mode. Atmospheric Environment, 2020, 231, 117488.	1.9	26
40	Aqueous Photoreactions of Wood Smoke Brown Carbon. ACS Earth and Space Chemistry, 2020, 4, 1149-1160.	1.2	39
41	Condensation/immersion mode ice-nucleating particles in a boreal environment. Atmospheric Chemistry and Physics, 2020, 20, 6687-6706.	1.9	9
42	Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. Science Advances, 2020, 6, eaay8973.	4.7	105
43	An Experimental Assessment of the Importance of S(IV) Oxidation by Hypohalous Acids in the Marine Atmosphere. Geophysical Research Letters, 2020, 47, e2019GL086465.	1.5	13
44	Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. Environmental Science & Technology, 2020, 54, 1730-1739.	4.6	87
45	Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N. Atmospheric Chemistry and Physics, 2020, 20, 10545-10563.	1.9	9
46	Organic Peroxides and Sulfur Dioxide in Aerosol: Source of Particulate Sulfate. Environmental Science & Technology, 2019, 53, 10695-10704.	4.6	53
47	Revisiting properties and concentrations of ice-nucleating particles in the sea surface microlayer and bulk seawater in the Canadian Arctic during summer. Atmospheric Chemistry and Physics, 2019, 19, 7775-7787.	1.9	38
48	Contribution of Charge-Transfer Complexes to Absorptivity of Primary Brown Carbon Aerosol. ACS Earth and Space Chemistry, 2019, 3, 1393-1401.	1.2	23
49	Kinetics and Condensed-Phase Products in Multiphase Ozonolysis of an Unsaturated Triglyceride. Environmental Science & Technology, 2019, 53, 12467-12475.	4.6	52
50	A large contribution of anthropogenic organo-nitrates to secondary organic aerosol in the Alberta oil sands. Atmospheric Chemistry and Physics, 2019, 19, 12209-12219.	1.9	18
51	Light Absorption by Ambient Black and Brown Carbon and its Dependence on Black Carbon Coating State for Two California, USA, Cities in Winter and Summer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1550-1577.	1.2	99
52	Indoor boundary layer chemistry modeling. Indoor Air, 2019, 29, 956-967.	2.0	17
53	Formation of Secondary Organic Aerosol from the Heterogeneous Oxidation by Ozone of a Phytoplankton Culture. ACS Earth and Space Chemistry, 2019, 3, 2298-2306.	1.2	14
54	Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth. Environmental Science & Technology, 2019, 53, 11792-11800.	4.6	47

4

#	Article	IF	CITATIONS
55	High Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmospheric Chemistry and Physics, 2019, 19, 2361-2384.	1.9	42
56	Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11658-11663.	3.3	86
57	Field evaluation of a Portable Fine Particle Concentrator (PFPC) for ice nucleating particle measurements. Aerosol Science and Technology, 2019, 53, 1067-1078.	1.5	9
58	Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation. Atmospheric Chemistry and Physics, 2019, 19, 1555-1570.	1.9	39
59	Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago. Atmospheric Chemistry and Physics, 2019, 19, 2787-2812.	1.9	38
60	Sources of isocyanic acid (HNCO) indoors: a focus on cigarette smoke. Environmental Sciences: Processes and Impacts, 2019, 21, 1334-1341.	1.7	14
61	Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014. Atmospheric Chemistry and Physics, 2019, 19, 1027-1039.	1.9	48
62	Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chemistry and Physics, 2019, 19, 2527-2560.	1.9	134
63	Reaction of Condensed-Phase Criegee Intermediates with Carboxylic Acids and Perfluoroalkyl Carboxylic Acids. Environmental Science and Technology Letters, 2019, 6, 243-250.	3.9	27
64	Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition. Atmospheric Chemistry and Physics, 2019, 19, 57-76.	1.9	32
65	Organic Surfactants Protect Dissolved Aerosol Components against Heterogeneous Oxidation. Journal of Physical Chemistry A, 2019, 123, 2114-2124.	1.1	8
66	Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements. Atmospheric Chemistry and Physics, 2019, 19, 15049-15071.	1.9	25
67	Heterogeneous Chlorination of Squalene and Oleic Acid. Environmental Science & Technology, 2019, 53, 1217-1224.	4.6	44
68	Fostering multidisciplinary research on interactions between chemistry, biology, and physics within the coupled cryosphere-atmosphere system. Elementa, 2019, 7, .	1.1	6
69	An indoor chemical cocktail. Science, 2018, 359, 632-633.	6.0	82
70	Oxidative Processing Lowers the Ice Nucleation Activity of Birch and Alder Pollen. Geophysical Research Letters, 2018, 45, 1647-1653.	1.5	23
71	Aqueous Phase Photo-oxidation of Brown Carbon Nitrophenols: Reaction Kinetics, Mechanism, and Evolution of Light Absorption. ACS Earth and Space Chemistry, 2018, 2, 225-234.	1.2	104
72	Heterogeneous Oxidation of Particulate Methanesulfonic Acid by the Hydroxyl Radical: Kinetics and Atmospheric Implications. ACS Earth and Space Chemistry, 2018, 2, 48-55.	1.2	26

#	Article	IF	CITATIONS
73	Temporally delineated sources of major chemical species in high Arctic snow. Atmospheric Chemistry and Physics, 2018, 18, 3485-3503.	1.9	13
74	Exploring Conditions for Ultrafine Particle Formation from Oxidation of Cigarette Smoke in Indoor Environments. Environmental Science & amp; Technology, 2018, 52, 4623-4631.	4.6	26
75	Identification of organic hydroperoxides and peroxy acids using atmospheric pressure chemical ionization–tandem mass spectrometry (APCI-MS/MS): application to secondary organic aerosol. Atmospheric Measurement Techniques, 2018, 11, 3081-3089.	1.2	45
76	Principal component analysis of summertime ground site measurements in the Athabasca oil sands with a focus on analytically unresolved intermediate-volatility organic compounds. Atmospheric Chemistry and Physics, 2018, 18, 17819-17841.	1.9	26
77	Heterogeneous OH oxidation of secondary brown carbon aerosol. Atmospheric Chemistry and Physics, 2018, 18, 14539-14553.	1.9	33
78	Ice-nucleating ability of aerosol particles and possible sources at three coastal marine sites. Atmospheric Chemistry and Physics, 2018, 18, 15669-15685.	1.9	37
79	High gas-phase mixing ratios of formic and acetic acid in the High Arctic. Atmospheric Chemistry and Physics, 2018, 18, 10237-10254.	1.9	25
80	Selective Uptake of Third-Hand Tobacco Smoke Components to Inorganic and Organic Aerosol Particles. Environmental Science & Technology, 2018, 52, 13195-13201.	4.6	28
81	Evidence for Gas–Surface Equilibrium Control of Indoor Nitrous Acid. Environmental Science & Technology, 2018, 52, 12419-12427.	4.6	71
82	Processes Controlling the Composition and Abundance of Arctic Aerosol. Reviews of Geophysics, 2018, 56, 621-671.	9.0	106
83	Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect. Atmospheric Chemistry and Physics, 2018, 18, 11345-11361.	1.9	34
84	Background Freeâ€Tropospheric Ice Nucleating Particle Concentrations at Mixedâ€Phase Cloud Conditions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,506.	1.2	24
85	Novel pathway of SO ₂ oxidation in the atmosphere: reactions with monoterpene ozonolysis intermediates and secondary organic aerosol. Atmospheric Chemistry and Physics, 2018, 18, 5549-5565.	1.9	89
86	Atmospheric Aerosol in the Changing Arctic. Eos, 2018, 99, .	0.1	2
87	Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds. Environmental Science & Technology, 2017, 51, 1405-1413.	4.6	99
88	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology, 2017, 51, 2519-2528.	4.6	75
89	Rapid Aqueous-Phase Photooxidation of Dimers in the α-Pinene Secondary Organic Aerosol. Environmental Science and Technology Letters, 2017, 4, 205-210.	3.9	29
90	Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6203-6208.	3.3	97

#	Article	IF	CITATIONS
91	Suppression of OH Generation from the Photo-Fenton Reaction in the Presence of α-Pinene Secondary Organic Aerosol Material. Environmental Science and Technology Letters, 2017, 4, 439-443.	3.9	32
92	Evidence for marine biogenic influence on summertime Arctic aerosol. Geophysical Research Letters, 2017, 44, 6460-6470.	1.5	56
93	Epoxide formation from heterogeneous oxidation of benzo[a]pyrene with gas-phase ozone and indoor air. Environmental Sciences: Processes and Impacts, 2017, 19, 1292-1299.	1.7	18
94	Observations and impacts of bleach washing on indoor chlorine chemistry. Indoor Air, 2017, 27, 1082-1090.	2.0	106
95	Organic Condensation and Particle Growth to CCN Sizes in the Summertime Marine Arctic Is Driven by Materials More Semivolatile Than at Continental Sites. Geophysical Research Letters, 2017, 44, 10,725.	1.5	45
96	Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere. Atmospheric Chemistry and Physics, 2017, 17, 13747-13766.	1.9	49
97	Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater. Atmospheric Chemistry and Physics, 2017, 17, 10583-10595.	1.9	78
98	Source attribution of Arctic black carbon constrained by aircraft and surface measurements. Atmospheric Chemistry and Physics, 2017, 17, 11971-11989.	1.9	58
99	Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments. Atmospheric Chemistry and Physics, 2017, 17, 13119-13138.	1.9	46
100	Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer. Atmospheric Chemistry and Physics, 2017, 17, 5515-5535.	1.9	62
101	Observations of atmospheric chemical deposition to high Arctic snow. Atmospheric Chemistry and Physics, 2017, 17, 5775-5788.	1.9	38
102	The SPectrometer for Ice Nuclei (SPIN): an instrument to investigate ice nucleation. Atmospheric Measurement Techniques, 2016, 9, 2781-2795.	1.2	56
103	Development of an in Situ NMR Photoreactor To Study Environmental Photochemistry. Environmental Science & Technology, 2016, 50, 5506-5516.	4.6	24
104	Rapid Oxidation of Skin Oil by Ozone. Environmental Science and Technology Letters, 2016, 3, 170-174.	3.9	66
105	Kinetics and Products from Heterogeneous Oxidation of Squalene with Ozone. Environmental Science & Technology, 2016, 50, 11688-11697.	4.6	80
106	Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds with OH Radicals. Environmental Science & Technology, 2016, 50, 11723-11734.	4.6	41
107	Gas Phase Oxidation of Nicotine by OH Radicals: Kinetics, Mechanisms, and Formation of HNCO. Environmental Science and Technology Letters, 2016, 3, 327-331.	3.9	49
108	Effects of 20–100†nm particles on liquid clouds in the clean summertime Arctic. Atmospheric Chemistry and Physics, 2016, 16, 11107-11124.	1.9	94

#	Article	IF	CITATIONS
109	Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications. Atmospheric Chemistry and Physics, 2016, 16, 1937-1953.	1.9	57
110	Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry. Atmospheric Chemistry and Physics, 2016, 16, 6721-6733.	1.9	30
111	Ship emissions measurement in the Arctic by plume intercepts of the Canadian Coast Guard icebreaker <i>Amundsen</i> from the <i>Polar 6</i> aircraft platform. Atmospheric Chemistry and Physics, 2016, 16, 7899-7916.	1.9	32
112	Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer. Atmospheric Chemistry and Physics, 2016, 16, 5191-5202.	1.9	59
113	Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium. Atmospheric Chemistry and Physics, 2016, 16, 5561-5572.	1.9	41
114	Airborne observations of far-infrared upwelling radiance in the Arctic. Atmospheric Chemistry and Physics, 2016, 16, 15689-15707.	1.9	5
115	Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe. Atmospheric Chemistry and Physics, 2016, 16, 1637-1651.	1.9	113
116	Quantification of black carbon mixing state from traffic: implications for aerosol optical properties. Atmospheric Chemistry and Physics, 2016, 16, 4693-4706.	1.9	43
117	Dimethyl sulfide in the summertime Arctic atmosphere: measurements and source sensitivity simulations. Atmospheric Chemistry and Physics, 2016, 16, 6665-6680.	1.9	66
118	Solubility and reactivity of HNCO in water: insights into HNCO's fate in the atmosphere. Atmospheric Chemistry and Physics, 2016, 16, 703-714.	1.9	39
119	Growth of nucleation mode particles in the summertime Arctic: a case study. Atmospheric Chemistry and Physics, 2016, 16, 7663-7679.	1.9	111
120	Sea spray aerosol as a unique source of ice nucleating particles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5797-5803.	3.3	323
121	Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmospheric Environment, 2016, 132, 1-10.	1.9	66
122	Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds. Physical Chemistry Chemical Physics, 2016, 18, 205-212.	1.3	44
123	Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products. Journal of Physical Chemistry A, 2016, 120, 1395-1407.	1.1	63
124	Primary marine aerosol loud interactions off the coast of California. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4282-4303.	1.2	83
125	Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation. Environmental Science & Technology, 2015, 49, 13215-13221.	4.6	51
126	Lightâ€absorbing properties of ambient black carbon and brown carbon from fossil fuel and biomass burning sources. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6619-6633.	1.2	98

#	Article	IF	CITATIONS
127	Mixing state of carbonaceous aerosol in an urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS). Atmospheric Chemistry and Physics, 2015, 15, 1823-1841.	1.9	83
128	Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2015, 15, 3395-3412.	1.9	32
129	Photochemical processing of aqueous atmospheric brown carbon. Atmospheric Chemistry and Physics, 2015, 15, 6087-6100.	1.9	247
130	Formation of hydroxyl radicals from photolysis of secondary organic aerosol material. Atmospheric Chemistry and Physics, 2015, 15, 7831-7840.	1.9	74
131	Ice nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions. Atmospheric Chemistry and Physics, 2015, 15, 12547-12566.	1.9	71
132	Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. Geophysical Research Letters, 2015, 42, 4182-4189.	1.5	84
133	Changes in Secondary Organic Aerosol Composition and Mass due to Photolysis: Relative Humidity Dependence. Journal of Physical Chemistry A, 2015, 119, 4309-4316.	1.1	68
134	Calculating Equilibrium Phase Distribution during the Formation of Secondary Organic Aerosol Using COSMO <i>therm</i> . Environmental Science & Technology, 2015, 49, 8585-8594.	4.6	18
135	Application of Direct Analysis in Real Time-Mass Spectrometry (DART-MS) to the Study of Gas–Surface Heterogeneous Reactions: Focus on Ozone and PAHs. Analytical Chemistry, 2015, 87, 4733-4740.	3.2	43
136	Connecting the oxidation of soot to its redox cycling abilities. Nature Communications, 2015, 6, 6812.	5.8	96
137	A marine biogenic source of atmospheric ice-nucleating particles. Nature, 2015, 525, 234-238.	13.7	475
138	Experimental and Theoretical Understanding of the Gas Phase Oxidation of Atmospheric Amides with OH Radicals: Kinetics, Products, and Mechanisms. Journal of Physical Chemistry A, 2015, 119, 4298-4308.	1.1	65
139	Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmospheric Measurement Techniques, 2014, 7, 4507-4516.	1.2	71
140	New Directions: Fundamentals of atmospheric chemistry: Keeping a three-legged stool balanced. Atmospheric Environment, 2014, 84, 390-391.	1.9	32
141	A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmospheric Chemistry and Physics, 2014, 14, 1587-1633.	1.9	235
142	Factors controlling the ice nucleating abilities of <i>α</i> â€pinene SOA particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9041-9051.	1.2	49
143	Suppression in droplet growth kinetics by the addition of organics to sulfate particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,222.	1.2	6
144	Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air–water interface and of the sea surface microlayer. Atmospheric Chemistry and Physics, 2014, 14, 1371-1384.	1.9	62

#	Article	IF	CITATIONS
145	Aqueous-phase photooxidation of levoglucosan – a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Atmospheric Chemistry and Physics, 2014, 14, 9695-9706.	1.9	102
146	CCN activity of size-selected aerosol at a Pacific coastal location. Atmospheric Chemistry and Physics, 2014, 14, 12307-12317.	1.9	20
147	Novel methods for predicting gas–particle partitioning during the formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 13189-13204.	1.9	27
148	Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra. Atmospheric Chemistry and Physics, 2014, 14, 8017-8042.	1.9	16
149	Review of Recent Developments and Shortcomings in the Characterization of Potential Atmospheric Ice Nuclei: Focus on the Tropics. Revista De Ciencias, 2014, 17, 15-34.	0.1	9
150	Ice nucleation by surrogates of Martian mineral dust: What can we learn about Mars without leaving Earth?. Journal of Geophysical Research E: Planets, 2013, 118, 1945-1954.	1.5	13
151	Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discussions, 2013, 165, 391-406.	1.6	132
152	Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 2013, 6, 438-442.	5.4	282
153	Gas Phase Oxidation of Monoethanolamine (MEA) with OH Radical and Ozone: Kinetics, Products, and Particles. Environmental Science & Technology, 2013, 47, 6377-6383.	4.6	65
154	Formation of Light Absorbing Organo-Nitrogen Species from Evaporation of Droplets Containing Glyoxal and Ammonium Sulfate. Environmental Science & Technology, 2013, 47, 12819-12826.	4.6	171
155	Filterable Redox Cycling Activity: A Comparison between Diesel Exhaust Particles and Secondary Organic Aerosol Constituents. Environmental Science & Technology, 2013, 47, 3362-3369.	4.6	98
156	Arctic snowpack bromine release. Nature Geoscience, 2013, 6, 331-332.	5.4	7
157	High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing. Atmospheric Measurement Techniques, 2013, 6, 3211-3224.	1.2	113
158	Feldspar minerals as efficient deposition ice nuclei. Atmospheric Chemistry and Physics, 2013, 13, 11175-11185.	1.9	84
159	Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning. Atmospheric Chemistry and Physics, 2013, 13, 9731-9744.	1.9	90
160	Photochemical chlorine and bromine activation from artificial saline snow. Atmospheric Chemistry and Physics, 2013, 13, 9789-9800.	1.9	54
161	Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts. Atmospheric Chemistry and Physics, 2013, 13, 5857-5872.	1.9	60
162	Characterization of the University of Toronto Concentrated Aerosol Particle Exposure Facility (CAPEF)—Effects on Fine and Ultrafine Nonrefractory Aerosol Composition. Aerosol Science and Technology, 2012, 46, 697-707.	1.5	8

#	Article	IF	CITATIONS
163	Physical Characterization of the University of Toronto Coarse, Fine, and Ultrafine High-Volume Particle Concentrator Systems. Aerosol Science and Technology, 2012, 46, 1015-1024.	1.5	12
164	Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions. Atmospheric Chemistry and Physics, 2012, 12, 6237-6271.	1.9	209
165	Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing. Atmospheric Chemistry and Physics, 2012, 12, 7103-7116.	1.9	111
166	Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley. Atmospheric Chemistry and Physics, 2012, 12, 3147-3163.	1.9	129
167	Organics in environmental ices: sources, chemistry, and impacts. Atmospheric Chemistry and Physics, 2012, 12, 9653-9678.	1.9	110
168	Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges. Chemical Society Reviews, 2012, 41, 6555.	18.7	201
169	Aqueous OH oxidation of ambient organic aerosol and cloud water organics: Formation of highly oxidized products. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	99
170	Relating atmospheric and oceanic DMS levels to particle nucleation events in the Canadian Arctic. Journal of Geophysical Research, 2011, 116, .	3.3	82
171	Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmospheric Measurement Techniques, 2011, 4, 445-461.	1.2	298
172	Aerosol composition and sources in the central Arctic Ocean during ASCOS. Atmospheric Chemistry and Physics, 2011, 11, 10619-10636.	1.9	120
173	Results from the University of Toronto continuous flow diffusion chamber at ICIS 2007: instrument intercomparison and ice onsets for different aerosol types. Atmospheric Chemistry and Physics, 2011, 11, 31-41.	1.9	72
174	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	1.9	392
175	Dimethyl sulfide air-sea fluxes and biogenic sulfur as a source of new aerosols in the Arctic fall. Journal of Geophysical Research, 2011, 116, .	3.3	38
176	The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nature Chemistry, 2011, 3, 291-295.	6.6	172
177	Temperature response of the submicron organic aerosol from temperate forests. Atmospheric Environment, 2011, 45, 6696-6704.	1.9	62
178	Resurgence in Ice Nuclei Measurement Research. Bulletin of the American Meteorological Society, 2011, 92, 1623-1635.	1.7	199
179	How Different Calculations of the Refractive Index Affect Estimates of the Radiative Forcing Efficiency of Ammonium Sulfate Aerosols. Journals of the Atmospheric Sciences, 2011, 68, 1845-1852.	0.6	26
180	Simultaneous factor analysis of organic particle and gas mass spectra: AMS and PTR-MS measurements at an urban site. Atmospheric Chemistry and Physics, 2010, 10, 1969-1988	1.9	90

#	Article	IF	CITATIONS
181	Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmospheric Chemistry and Physics, 2010, 10, 2825-2845.	1.9	164
182	The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation. Atmospheric Chemistry and Physics, 2010, 10, 5047-5064.	1.9	245
183	Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation. Atmospheric Chemistry and Physics, 2010, 10, 5551-5563.	1.9	84
184	Particle formation and growth at five rural and urban sites. Atmospheric Chemistry and Physics, 2010, 10, 7979-7995.	1.9	83
185	Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): correction for humidity effects. Atmospheric Measurement Techniques, 2010, 3, 1055-1062.	1.2	103
186	An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmospheric Chemistry and Physics, 2010, 10, 10561-10605.	1.9	352
187	Primary and secondary organic aerosols in urban air masses intercepted at a rural site. Journal of Geophysical Research, 2010, 115, .	3.3	27
188	Kinetics of N ₂ O ₅ Hydrolysis on Secondary Organic Aerosol and Mixed Ammonium Bisulfateâ^'Secondary Organic Aerosol Particles. Journal of Physical Chemistry A, 2010, 114, 13113-13121.	1.1	44
189	The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC): A Simple Design for Ice Nucleation Studies. Aerosol Science and Technology, 2009, 43, 730-738.	1.5	47
190	Measurements of VOCs by proton transfer reaction mass spectrometry at a rural Ontario site: Sources and correlation to aerosol composition. Journal of Geophysical Research, 2009, 114, .	3.3	47
191	Heterogeneous nitration reactions of polycyclic aromatic hydrocarbons and n-hexane soot by exposure to NO3/NO2/N2O5. Atmospheric Environment, 2008, 42, 8309-8314.	1.9	35
192	Chemical aging of ambient organic aerosol from heterogeneous reaction with hydroxyl radicals. Geophysical Research Letters, 2008, 35, .	1.5	68
193	Formation of Volatile Organic Compounds in the Heterogeneous Oxidation of Condensed-Phase Organic Films by Gas-Phase OH. Journal of Physical Chemistry A, 2008, 112, 1552-1560.	1.1	83
194	Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area. Environmental Research Letters, 2008, 3, 025004.	2.2	88
195	Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. Atmospheric Chemistry and Physics, 2007, 7, 4187-4201.	1.9	182
196	Interaction of NO2 with Hydrocarbon Soot: $\hat{a}\in\infty$ Focus on HONO Yield, Surface Modification, and Mechanism. Journal of Physical Chemistry A, 2007, 111, 6263-6273.	1.1	122
197	Comparison between measured and predicted CCN concentrations at Egbert, Ontario: Focus on the organic aerosol fraction at a semi-rural site. Atmospheric Environment, 2007, 41, 8172-8182.	1.9	75

Heterogeneous Oxidation of Saturated Organic Particles by OH. , 2007, , 736-740.

3

#	Article	IF	CITATIONS
199	Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. Journal of Geophysical Research, 2006, 111, .	3.3	104
200	Solid Ammonium Sulfate Aerosols as Ice Nuclei: A Pathway for Cirrus Cloud Formation. Science, 2006, 313, 1770-1773.	6.0	247
201	Kinetic and Product Yield Study of the Heterogeneous Gasâ^'Surface Reaction of Anthracene and Ozone. Journal of Physical Chemistry A, 2006, 110, 3638-3646.	1.1	96
202	Br2Production from the Heterogeneous Reaction of Gas-Phase OH with Aqueous Salt Solutions:Â Impacts of Acidity, Halide Concentration, and Organic Surfactants. Journal of Physical Chemistry A, 2006, 110, 10456-10464.	1.1	50
203	Reactive Uptake of N2O5by Aerosol Particles Containing Mixtures of Humic Acid and Ammonium Sulfateâ€. Journal of Physical Chemistry A, 2006, 110, 6986-6994.	1.1	105
204	Closure between measured and modeled cloud condensation nuclei (CCN) using size-resolved aerosol compositions in downtown Toronto. Atmospheric Chemistry and Physics, 2006, 6, 2513-2524.	1.9	123
205	Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate. Atmospheric Chemistry and Physics, 2006, 6, 755-768.	1.9	88
206	Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmospheric Environment, 2005, 39, 4767-4778.	1.9	113
207	A kinetic model for uptake of HNO3 and HCl on ice in a coated wall flow system. Physical Chemistry Chemical Physics, 2005, 7, 3434.	1.3	34
208	Uptake of gas-phase nitric acid to ice at low partial pressures: evidence for unsaturated surface coverage. Faraday Discussions, 2005, 130, 211.	1.6	45
209	Burial of gas-phase HNO3 by growing ice surfaces under tropospheric conditions. Physical Chemistry Chemical Physics, 2005, 7, 3596.	1.3	35
210	N2O5Reaction on Submicron Sea Salt Aerosol:Â Kinetics, Products, and the Effect of Surface Active Organics. Journal of Physical Chemistry A, 2005, 109, 10004-10012.	1.1	207
211	Measurements of HO2uptake to aqueous aerosol: Mass accommodation coefficients and net reactive loss. Journal of Geophysical Research, 2005, 110, .	3.3	65
212	Diffuse Reflectance FTIR Study of the Interaction of Alumina Surfaces with Ozone and Water Vapor. Journal of Physical Chemistry A, 2005, 109, 9028-9034.	1.1	94
213	Heterogeneous reaction of ozone with liquid unsaturated fatty acids: detailed kinetics and gas-phase product studies. Physical Chemistry Chemical Physics, 2004, 6, 84.	1.3	180
214	Kinetics of Surface-Bound Benzo[a]pyrene and Ozone on Solid Organic and Salt Aerosols. Journal of Physical Chemistry A, 2004, 108, 11626-11634.	1.1	161
215	How efficient is cloud droplet formation of organic aerosols?. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	51
216	Formation of cloud condensation nuclei by oxidative processing: Unsaturated fatty acids. Journal of Geophysical Research, 2004, 109, .	3.3	75

#	Article	IF	CITATIONS
217	Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles. Atmospheric Chemistry and Physics, 2004, 4, 1301-1310.	1.9	74
218	A study of the phase transition behavior of internally mixed ammonium sulfate - malonic acid aerosols. Atmospheric Chemistry and Physics, 2004, 4, 1451-1459.	1.9	85
219	Phase Transitions of Malonic and Oxalic Acid Aerosols. Journal of Physical Chemistry A, 2003, 107, 6594-6602.	1.1	116
220	Interactions of Atmospheric Trace Gases with Ice Surfaces:  Adsorption and Reaction. Chemical Reviews, 2003, 103, 4783-4800.	23.0	241
221	N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size. Physical Chemistry Chemical Physics, 2003, 5, 4593.	1.3	214
222	Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species. Atmospheric Chemistry and Physics, 2003, 3, 509-520.	1.9	179
223	Adsorption to Ice of n-Alcohols (Ethanol to 1-Hexanol), Acetic Acid, and Hexanal. Journal of Physical Chemistry A, 2002, 106, 775-782.	1.1	117
224	Kinetics and Product Yields in the Heterogeneous Reactions of HOBr with Ice Surfaces Containing NaBr and NaCl. Journal of Physical Chemistry A, 2002, 106, 5279-5287.	1.1	64
225	Uptake of Gas-Phase SO2and H2O2by Ice Surfaces:Â Dependence on Partial Pressure, Temperature, and Surface Acidity. Journal of Physical Chemistry A, 2001, 105, 6630-6636.	1.1	76
226	Introduction to Atmospheric Chemistry (Jacob, Daniel J.). Journal of Chemical Education, 2000, 77, 1123.	1.1	0
227	Gas-Phase Br2Production in Heterogeneous Reactions of Cl2, HOCl, and BrCl with Halideâ^'Ice Surfaces. Journal of Physical Chemistry A, 2000, 104, 7284-7293.	1.1	58
228	Intersystem Crossing and Nonadiabatic Product Channels in the Photodissociation of N2O4at 193 nm. Journal of Physical Chemistry A, 2000, 104, 4825-4832.	1.1	14
229	Infrared Observations of the Response of NaCl, MgCl2, NH4HSO4, and NH4NO3 Aerosols to Changes in Relative Humidity from 298 to 238 K. Journal of Physical Chemistry A, 2000, 104, 2038-2047.	1.1	160
230	HOBr in Sulfuric Acid Solutions:  Solubility and Reaction with HCl as a Function of Temperature and Concentration. Journal of Physical Chemistry A, 1999, 103, 5312-5320.	1.1	31
231	Heterogeneous Interactions of HOBr, HNO3, O3, and NO2with Deliquescent NaCl Aerosols at Room Temperature. Journal of Physical Chemistry A, 1998, 102, 3719-3725.	1.1	127
232	Reaction Probabilities for N2O5 Hydrolysis on Sulfuric Acid and Ammonium Sulfate Aerosols at Room Temperature. Journal of Physical Chemistry A, 1997, 101, 871-878.	1.1	161
233	Heterogeneous Interactions of HBr and HOCl with Cold Sulfuric Acid Solutions:Â Implications for Arctic Boundary Layer Bromine Chemistry. Journal of Physical Chemistry A, 1997, 101, 2131-2137.	1.1	45
234	Interaction of HNO3with water-ice surfaces at temperatures of the free troposphere. Geophysical Research Letters, 1997, 24, 1479-1482.	1.5	144

#	Article	IF	CITATIONS
235	Heterogeneous interactions of BrO and ClO: Evidence for BrO surface recombination and reaction with HSO3â''/SO32â''. Geophysical Research Letters, 1996, 23, 1681-1684.	1.5	17
236	Interactions of HBr, HCl, and HOBr with supercooled sulfuric acid solutions of stratospheric composition. Journal of Geophysical Research, 1995, 100, 14009.	3.3	38
237	Heterogeneous reaction of HOBr with HBr and HCl on ice surfaces at 228 K. Geophysical Research Letters, 1994, 21, 665-668.	1.5	120
238	Physical chemistry of the sulfuric acid/water binary system at low temperatures: stratospheric implications. The Journal of Physical Chemistry, 1993, 97, 7351-7358.	2.9	167
239	The heterogeneous reaction of HOCl + HCl → Cl ₂ + H ₂ O on ice and nitric acid trihydrate: Reaction probabilities and stratospheric implications. Geophysical Research Letters, 1992, 19, 461-464.	1.5	126