James Lb Mallet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4009324/publications.pdf Version: 2024-02-01

IMMES IR MALLET

#	Article	IF	CITATIONS
1	Hybridization as an invasion of the genome. Trends in Ecology and Evolution, 2005, 20, 229-237.	4.2	1,767
2	Hybridization and speciation. Journal of Evolutionary Biology, 2013, 26, 229-246.	0.8	1,735
3	Hybrid speciation. Nature, 2007, 446, 279-283.	13.7	1,455
4	Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, 2012, 487, 94-98.	13.7	1,086
5	Host races in plant–feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 471-492.	1.8	771
6	A species definition for the modern synthesis. Trends in Ecology and Evolution, 1995, 10, 294-299.	4.2	757
7	Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology and Evolution, 2004, 19, 464-469.	4.2	645
8	Reproductive isolation caused by colour pattern mimicry. Nature, 2001, 411, 302-305.	13.7	611
9	Genome-wide evidence for speciation with gene flow in <i>Heliconius</i> butterflies. Genome Research, 2013, 23, 1817-1828.	2.4	609
10	Bimodal hybrid zones and speciation. Trends in Ecology and Evolution, 2000, 15, 250-255.	4.2	538
11	Evolution of Diversity in Warning Color and Mimicry: Polymorphisms, Shifting Balance, and Speciation. Annual Review of Ecology, Evolution, and Systematics, 1999, 30, 201-233.	6.7	477
12	Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2971-2986.	1.8	464
13	How reticulated are species?. BioEssays, 2016, 38, 140-149.	1.2	449
14	Genomic architecture and introgression shape a butterfly radiation. Science, 2019, 366, 594-599.	6.0	365
15	Genomic islands of divergence in hybridizing <i>Heliconius</i> butterflies identified by large-scale targeted sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 343-353.	1.8	294
16	A Conserved Supergene Locus Controls Colour Pattern Diversity in Heliconius Butterflies. PLoS Biology, 2006, 4, e303.	2.6	242
17	Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evolutionary Biology, 2007, 7, 28.	3.2	239
18	STRONG NATURAL SELECTION IN A WARNING-COLOR HYBRID ZONE. Evolution; International Journal of Organic Evolution, 1989, 43, 421-431.	1.1	234

#	Article	IF	CITATIONS
19	Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2881-2889.	1.2	233
20	Estimation of the Spontaneous Mutation Rate in Heliconius melpomene. Molecular Biology and Evolution, 2015, 32, 239-243.	3.5	220
21	Biodiversity Conservation and the Millennium Development Goals. Science, 2009, 325, 1502-1503.	6.0	216
22	Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. Systematic Biology, 2015, 64, 505-524.	2.7	204
23	Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biology Letters, 2012, 8, 609-612.	1.0	194
24	Taxonomy: renaissance or Tower of Babel?. Trends in Ecology and Evolution, 2003, 18, 57-59.	4.2	192
25	Strong Natural Selection in a Warning-Color Hybrid Zone. Evolution; International Journal of Organic Evolution, 1989, 43, 421.	1.1	190
26	Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1849-1854.	1.2	189
27	Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 97-105.	1.2	181
28	Complex modular architecture around a simple toolkit of wing pattern genes. Nature Ecology and Evolution, 2017, 1, 52.	3.4	179
29	Individual selection, kin selection, and the shifting balance in the evolution of warning colours: the evidence from butterflies. Biological Journal of the Linnean Society, 1987, 32, 337-350.	0.7	160
30	The evolution of insecticide resistance: Have the insects won?. Trends in Ecology and Evolution, 1989, 4, 336-340.	4.2	160
31	Genomeâ€wide patterns of divergence and gene flow across a butterfly radiation. Molecular Ecology, 2013, 22, 814-826.	2.0	160
32	Causes and Consequences of a Lack of Coevolution in Müllerian mimicry. Evolutionary Ecology, 1999, 13, 777-806.	0.5	158
33	Phylogenetic Discordance at the Species Boundary: Comparative Gene Genealogies Among Rapidly Radiating Heliconius Butterflies. Molecular Biology and Evolution, 2002, 19, 2176-2190.	3.5	156
34	Female Behaviour Drives Expression and Evolution of Gustatory Receptors in Butterflies. PLoS Genetics, 2013, 9, e1003620.	1.5	154
35	Major Improvements to the <i>Heliconius melpomene</i> Genome Assembly Used to Confirm 10 Chromosome Fusion Events in 6ÂMillion Years of Butterfly Evolution. G3: Genes, Genomes, Genetics, 2016, 6, 695-708.	0.8	149
36	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	1.0	146

#	Article	IF	CITATIONS
37	Disruptive ecological selection on a mating cue. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4907-4913.	1.2	143
38	Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell and Melanoma Research, 2012, 25, 411-433.	1.5	143
39	Hybrid zones of Heliconius butterflies in Panama and the stability and movement of warning colour clines. Heredity, 1986, 56, 191-202.	1.2	142
40	INFERENCES FROM A RAPIDLY MOVING HYBRID ZONE. Evolution; International Journal of Organic Evolution, 2002, 56, 741-753.	1.1	138
41	Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biological Journal of the Linnean Society, 2007, 92, 221-239.	0.7	138
42	Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biology, 2016, 14, e1002353.	2.6	136
43	Supergene Evolution Triggered by the Introgression of a Chromosomal Inversion. Current Biology, 2018, 28, 1839-1845.e3.	1.8	130
44	Variable Selection and the Coexistence of Multiple mimetic forms of the Butterfly Heliconius numata. Evolutionary Ecology, 1999, 13, 721-754.	0.5	123
45	Mitochondrial DNA barcoding detects some species that are real, and some that are not. Molecular Ecology Resources, 2010, 10, 264-273.	2.2	119
46	ARE SPECIES REAL? THE SHAPE OF THE SPECIES BOUNDARY WITH EXPONENTIAL FAILURE, REINFORCEMENT, AND THE "MISSING SNOWBALL― Evolution; International Journal of Organic Evolution, 2010, 64, 1-24.	1.1	115
47	Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biology, 2016, 17, 25.	3.8	115
48	What Is Speciation?. PLoS Genetics, 2016, 12, e1005860.	1.5	115
49	Polyphyly and gene flow between non-sibling Heliconius species. BMC Biology, 2006, 4, 11.	1.7	113
50	Mimicry: developmental genes that contribute to speciation. Evolution & Development, 2003, 5, 269-280.	1.1	112
51	Hybrid Sterility, Haldane's Rule and Speciation in <i>Heliconius cydno</i> and <i>H. melpomene</i> . Genetics, 2002, 161, 1517-1526.	1.2	111
52	Three ways of assessing metapopulation structure in the butterfly Plebejus argus. Ecological Entomology, 1997, 22, 283-293.	1.1	109
53	Wing patterning gene redefines the mimetic history of <i>Heliconius</i> butterflies. Proceedings of the United States of America, 2011, 108, 19666-19671	3.3	104
54	Prevalence and Adaptive Impact of Introgression. Annual Review of Genetics, 2021, 55, 265-283.	3.2	99

4

#	Article	IF	CITATIONS
55	SEX-LINKED HYBRID STERILITY IN A BUTTERFLY. Evolution; International Journal of Organic Evolution, 2001, 55, 1631-1638.	1.1	98
56	Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Heliconius melpomene Clade. PLoS Genetics, 2010, 6, e1000794.	1.5	97
57	ECOLOGY: Refuting Refugia?. Science, 2003, 300, 71-72.	6.0	93
58	Genetic differentiation in Zeiraphera diniana (Lepidoptera: Tortricidae, the larch budmoth): polymorphism, host races or sibling species?. Heredity, 1995, 75, 416-424.	1.2	89
59	What does Drosophila genetics tell us about speciation?. Trends in Ecology and Evolution, 2006, 21, 386-393.	4.2	88
60	Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biological Journal of the Linnean Society, 2012, 105, 479-497.	0.7	85
61	Shift happens! Shifting balance and the evolution of diversity in warning colour and mimicry. Ecological Entomology, 2010, 35, 90-104.	1.1	79
62	What can hybrid zones tell us about speciation? The case of <i>Heliconius erato</i> and <i>H. himera</i> (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 1996, 59, 221-242.	0.7	76
63	HOST-INDUCED ASSORTATIVE MATING IN HOST RACES OF THE LARCH BUDMOTH. Evolution; International Journal of Organic Evolution, 2001, 55, 2002-2010.	1.1	71
64	Correlations between adult mimicry and larval host plants in ithomiine butterflies. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S266-9.	1.2	71
65	The anatomy of a â€ [~] suture zone' in Amazonian butterflies: a coalescent-based test for vicariant geographic divergence and speciation. Molecular Ecology, 2010, 19, 4283-4301.	2.0	68
66	Dispersal and gene flow in a butterfly with home range behavior: Heliconius erato (Lepidoptera:) Tj ETQq0 0 0 rg	BT /Overlc	ck_{63}^{10} Tf 50 3
67	Biochemical Genetics of Heliothis and Helicoverpa (Lepidoptera: Noctuidae) and Evidence for a Founder Event in Helicoverpa zea. Annals of the Entomological Society of America, 1993, 86, 189-197.	1.3	63
68	Strikingly variable divergence times inferred across an Amazonian butterfly â€~suture zone'. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2525-2533.	1.2	63
69	Mayr's view of Darwin: was Darwin wrong about speciation?. Biological Journal of the Linnean Society, 0, 95, 3-16.	0.7	63
70	Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography, 2016, 43, 44-58.	1.4	54
71	Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Molecular Ecology, 2016, 25, 5765-5784.	2.0	52
72	Speciation in two neotropical butterflies: extending Haldane's rule. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 845-851.	1.2	51

#	Article	IF	CITATIONS
73	Population Structure in Heliothis virescens (Lepidoptera: Noctuidae): an Estimate of Gene Flow. Annals of the Entomological Society of America, 1993, 86, 182-188.	1.3	49
74	North Andean origin and diversification of the largest ithomiine butterfly genus. Scientific Reports, 2017, 7, 45966.	1.6	48
75	Ecological and genetic factors influencing the transition between hostâ€use strategies in sympatric <scp><i>Heliconius</i></scp> butterflies. Journal of Evolutionary Biology, 2013, 26, 1959-1967.	0.8	46
76	Perspectives Poulton, Wallace and Jordan: How discoveries inPapiliobutterflies led to a new species concept 100 years ago. Systematics and Biodiversity, 2004, 1, 441-452.	0.5	43
77	Species, Concepts of. , 2013, , 679-691.		43
78	Stable <i>Heliconius</i> butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin. Evolution; International Journal of Organic Evolution, 2014, 68, 3470-3484.	1.1	38
79	Why was Darwin's view of species rejected by twentieth century biologists?. Biology and Philosophy, 2010, 25, 497-527.	0.7	37
80	Hybridisation and climate change: brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conservation and Diversity, 2011, 4, 192-199.	1.4	37
81	Genetic differentiation without mimicry shift in a pair of hybridizing <i>Heliconius</i> species (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 2013, 109, 830-847.	0.7	37
82	Sex roles in the ghost moth Hepialus humuli (L.) and a review of mating in the Hepialidae (Lepidoptera). Zoological Journal of the Linnean Society, 1984, 80, 67-82.	1.0	35
83	Evolution: Mimicry meets the mitochondrion. Current Biology, 1996, 6, 937-940.	1.8	35
84	Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Global Ecology and Biogeography, 2019, 28, 1118-1132.	2.7	35
85	ESTIMATING THE MATING BEHAVIOR OF A PAIR OF HYBRIDIZING <i>HELICONIUS</i> SPECIES IN THE WILD. Evolution; International Journal of Organic Evolution, 1998, 52, 503-510.	1.1	32
86	Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies?. BMC Evolutionary Biology, 2015, 15, 125.	3.2	32
87	Contrasting patterns of Andean diversification among three diverse clades of Neotropical clearwing butterflies. Ecology and Evolution, 2018, 8, 3965-3982.	0.8	29
88	The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity, 2019, 123, 138-152.	1.2	28
89	Genetic analysis of a wild-caught hybrid between non-sister <i>Heliconius</i> butterfly species. Biology Letters, 2007, 3, 660-663.	1.0	26
90	Host plant adaptation has not played a role in the recent speciation of Heliconius himera and Heliconius erato. Ecological Entomology, 1997, 22, 361-365.	1.1	25

#	Article	IF	CITATIONS
91	Molecular phylogenetics of the neotropical butterfly subtribe Oleriina (Nymphalidae: Danainae:) Tj ETQq1 1 0.78	4314 rgBT 1.2	/Qverlock 1
92	Rapid speciation, hybridization and adaptive radiation in the Heliconius melpomene group. , 2001, , 177-194.		23
93	Simultaneous TE Analysis of 19 Heliconiine Butterflies Yields Novel Insights into Rapid TE-Based Genome Diversification and Multiple SINE Births and Deaths. Genome Biology and Evolution, 2019, 11, 2162-2177.	1.1	23
94	Estimating the Mating Behavior of a Pair of Hybridizing Heliconius Species in the Wild. Evolution; International Journal of Organic Evolution, 1998, 52, 503.	1.1	21
95	Subspecies, Semispecies, Superspecies. , 2013, , 45-48.		21
96	Phylogenetic Utility of <1>Tektin 1 , a Novel Region for Inferring Systematic Relationships Among Lepidoptera. Annals of the Entomological Society of America, 2005, 98, 873-886.	1.3	20
97	Group selection and the development of the biological species concept. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1853-1863.	1.8	19
98	Anthropogenic pressures coincide with Neotropical biodiversity hotspots in a flagship butterfly group. Diversity and Distributions, 2022, 28, 2912-2930.	1.9	18
99	Ecologically relevant cryptic species in the highly polymorphic Amazonian butterfly Mechanitis mazaeus s.l. (Lepidoptera: Nymphalidae; Ithomiini). Biological Journal of the Linnean Society, 2012, 106, 540-560.	0.7	17
100	Alternative views of biological species: reproductively isolated units or genotypic clusters?. National Science Review, 2020, 7, 1401-1407.	4.6	17
101	Selection for enemy-free space: eggs placed away from the host plant increase survival of a neotropical ithomiine butterfly. Ecological Entomology, 2011, 36, 667-672.	1.1	16
102	Full-Likelihood Genomic Analysis Clarifies a Complex History of Species Divergence and Introgression: The Example of the <i>erato-sara</i> Group of <i>Heliconius</i> Butterflies. Systematic Biology, 2022, 71, 1159-1177.	2.7	16
103	Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies. Zoological Journal of the Linnean Society, 2019, 186, 233-249.	1.0	15
104	Synteny-Based Genome Assembly for 16 Species of <i>Heliconius</i> Butterflies, and an Assessment of Structural Variation across the Genus. Genome Biology and Evolution, 2021, 13, .	1.1	15
105	SEX-LINKED HYBRID STERILITY IN A BUTTERFLY. Evolution; International Journal of Organic Evolution, 2001, 55, 1631.	1.1	13
106	Species, Concepts of. , 2007, , 1-15.		13
107	Subspecies, Semispecies, Superspecies. , 2007, , 1-5.		12
108	Hybrid zones and the speciation continuum in <i><scp>H</scp>eliconius</i> butterflies. Molecular Ecology, 2012, 21, 5643-5645.	2.0	11

#	Article	IF	CITATIONS
109	Invasive insect hybridizes with local pests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4819-4821.	3.3	11
110	Complex basis of hybrid female sterility and Haldane's rule in <i>Heliconius</i> butterflies: Zâ€linkage and epistasis. Molecular Ecology, 2022, 31, 959-977.	2.0	10
111	Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Molecular Ecology, 2020, 29, 1328-1343.	2.0	9
112	The Amazon river is a suture zone for a polyphyletic group of coâ€mimetic heliconiine butterflies. Ecography, 2021, 44, 177-187.	2.1	9
113	Is Mimicry theory unpalatable?. Trends in Ecology and Evolution, 1990, 5, 344-345.	4.2	8
114	Reply from J. Mallet. Trends in Ecology and Evolution, 1995, 10, 490-491.	4.2	8
115	New genomes clarify mimicry evolution. Nature Genetics, 2015, 47, 306-307.	9.4	8
116	Admixture of evolutionary rates across a butterfly hybrid zone. ELife, 0, 11, .	2.8	8
117	Excess melanin precursors rescue defective cuticular traits in stony mutant silkworms probably by upregulating four genes encoding RR1-type larval cuticular proteins. Insect Biochemistry and Molecular Biology, 2020, 119, 103315.	1.2	7
118	Reply from J. Mallet. Trends in Ecology and Evolution, 1996, 11, 174-175.	4.2	6
119	Species problem solved 100 years ago. Nature, 2004, 430, 503-503.	13.7	6
120	Mitochondrial DNA provides an insight into the mechanisms driving diversification in the ithomiine butterfly Hyposcada anchiala (Lepidoptera: Nymphalidae: Ithomiinae). European Journal of Entomology, 2005, 102, 633-639.	1.2	6
121	Ecological and Evolutionary Aspects of Insecticide Resistance. By John A. McKenzie. R. G. Landes Co. (Academic Press). 1996. 885 pages. Hard cover. ISBN 0 12 484825 7 Genetical Research, 1996, 68, 183-184.	0.3	5
122	Darwin and Species. , 0, , 109-115.		5
123	Ecological Genetics: A Key Gene for Mimicry and Melanism. Current Biology, 2016, 26, R802-R804.	1.8	3
124	Molecular Genetic Analysis of Populations. Second Edition. Practical Approach Series. Edited by A. R. Hoelzel. Oxford, New York, Tokyo: IRL Press at Oxford University Press. 1998. Pp. xxii+445. £29.95 (paperback) Annals of Human Genetics, 1999, 63, 273-275.	0.3	2
125	Alfred Russel Wallace and the Darwinian Species Concept: His Paper on the Swallowtail Butterflies (Papilionidae) of 1865. Gayana, 0, 73,	0.0	2
126	Reply from J.L.B. Mallet. Trends in Ecology and Evolution, 1990, 5, 164-165.	4.2	1

#	Article	IF	CITATIONS
127	Reply from M. Joron and J.L.B. Mallet. Trends in Ecology and Evolution, 1999, 14, 151.	4.2	1
128	Reply from C.D. Jiggins and J. Mallet. Trends in Ecology and Evolution, 2000, 15, 469.	4.2	1
129	Species, Concepts of. , 2024, , 531-545.		1
130	The butterflies of north america: A natural history and field guide. Trends in Ecology and Evolution, 1987, 2, 256-257.	4.2	0
131	Alfred Russel Wallace: An anthology of his shorter writings. Trends in Ecology and Evolution, 1992, 7, 32-33.	4.2	0
132	Tropical ecology in miniature. Trends in Ecology and Evolution, 1998, 13, 377.	4.2	0
133	GENETIC STRUCTURE AND LOCAL ADAPTATION IN NATURAL INSECT POPULATIONS. Edited by Susan Mopper and Sharon Y. Strauss. Chapman and Hall, New York. 1998. Hardback, £65.00. ISBN 0-412-08031-1 Ecological Entomology, 1998, 23, 495-496.	1.1	0
134	From a â€~feel for the organism' to a model system. Trends in Ecology and Evolution, 2004, 19, 625-626.	4.2	0
135	Catfish mimics. Nature, 2011, 469, 41-42.	13.7	0
136	Speciation: Frog Mimics Prefer Their Own. Current Biology, 2014, 24, R1094-R1096.	1.8	0
137	Reply to Andrew Brower's critique of the evidence for hybridization among Heliconius butterfly species in the wild . Zootaxa, 2019, 4679, 577-595.	0.2	0
138	Subspecies, Semispecies, Superspecies. , 2024, , 546-549.		0
139	Sympatric speciation by allochrony?. Molecular Ecology, 0, , .	2.0	0