Paul E Wischmeyer, Edic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4009205/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Randomized Trial of Glutamine and Antioxidants in Critically Ill Patients. New England Journal of Medicine, 2013, 368, 1489-1497.	13.9	777
2	American Gut: an Open Platform for Citizen Science Microbiome Research. MSystems, 2018, 3, .	1.7	604
3	Glutamine administration reduces Gram-negative bacteremia in severely burned patients: A prospective, randomized, double-blind trial versus isonitrogenous control. Critical Care Medicine, 2001, 29, 2075-2080.	0.4	330
4	Perioperative Use of Arginine-supplemented Diets: A Systematic Review of the Evidence. Journal of the American College of Surgeons, 2011, 212, 385-399e1.	0.2	306
5	Metabolic and nutritional support of critically ill patients: consensus and controversies. Critical Care, 2015, 19, 35.	2.5	306
6	Extreme Dysbiosis of the Microbiome in Critical Illness. MSphere, 2016, 1, .	1.3	283
7	American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Nutrition Screening and Therapy Within a Surgical Enhanced Recovery Pathway. Anesthesia and Analgesia, 2018, 126, 1883-1895.	1.1	270
8	Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Critical Care, 2016, 20, 262.	2.5	227
9	Bedside Ultrasound Is a Practical and Reliable Measurement Tool for Assessing Quadriceps Muscle Layer Thickness. Journal of Parenteral and Enteral Nutrition, 2014, 38, 886-890.	1.3	201
10	Glutamine attenuates lung injury and improves survival after sepsis: Role of enhanced heat shock protein expression*. Critical Care Medicine, 2005, 33, 1206-1213.	0.4	187
11	Glutamine attenuates tumor necrosis factor-α release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition, 2003, 19, 1-6.	1.1	156
12	Glutamine and heat shock protein expression. Nutrition, 2002, 18, 225-228.	1.1	155
13	GLUTAMINE REDUCES CYTOKINE RELEASE, ORGAN DAMAGE, AND MORTALITY IN A RAT MODEL OF ENDOTOXEMIA. Shock, 2001, 16, 398-402.	1.0	143
14	Parenteral glutamine supplementation in critical illness: a systematic review. Critical Care, 2014, 18, R76.	2.5	141
15	Glutamine's protection against sepsis and lung injury is dependent on heat shock protein 70 expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1839-R1845.	0.9	130
16	Role of the microbiome, probiotics, and â€~dysbiosis therapy' in critical illness. Current Opinion in Critical Care, 2016, 22, 347-353.	1.6	128
17	A Survey of Propofol Abuse in Academic Anesthesia Programs. Anesthesia and Analgesia, 2007, 105, 1066-1071.	1.1	121
18	A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial. Critical Care, 2017, 21, 142.	2.5	118

#	Article	IF	CITATIONS
19	Glutamine: Mode of action in critical illness. Critical Care Medicine, 2007, 35, S541-S544.	0.4	113
20	Prehabilitation and Nutritional Support to Improve Perioperative Outcomes. Current Anesthesiology Reports, 2017, 7, 340-349.	0.9	109
21	Nutrition Therapy for the Critically III Surgical Patient. Journal of Parenteral and Enteral Nutrition, 2010, 34, 644-652.	1.3	105
22	ORAL GLUTAMINE ENHANCES HEAT SHOCK PROTEIN EXPRESSION AND IMPROVES SURVIVAL FOLLOWING HYPERTHERMIA. Shock, 2006, 25, 295-299.	1.0	103
23	Glutamine: role in critical illness and ongoing clinical trials. Current Opinion in Gastroenterology, 2008, 24, 190-197.	1.0	98
24	Clutamine and Antioxidants in the Critically III Patient. Journal of Parenteral and Enteral Nutrition, 2015, 39, 401-409.	1.3	98
25	Summary Points and Consensus Recommendations From the North American Surgical Nutrition Summit. Journal of Parenteral and Enteral Nutrition, 2013, 37, 99S-105S.	1.3	93
26	Persistent hypermetabolism and longitudinal energy expenditure in critically ill patients with COVID-19. Critical Care, 2020, 24, 581.	2.5	82
27	Single dose of glutamine enhances myocardial tissue metabolism, glutathione content, and improves myocardial function after ischemiaâ€reperfusion injury. Journal of Parenteral and Enteral Nutrition, 2003, 27, 396-403.	1.3	81
28	Assessment of perioperative nutrition practices and attitudes—A national survey of colorectal and GI surgical oncology programs. American Journal of Surgery, 2017, 213, 1010-1018.	0.9	77
29	The malnourished surgery patient. Current Opinion in Anaesthesiology, 2019, 32, 405-411.	0.9	77
30	Probiotic Administration Reduces Mortality and Improves Intestinal Epithelial Homeostasis in Experimental Sepsis. Anesthesiology, 2013, 119, 166-177.	1.3	69
31	Tailoring nutrition therapy to illness and recovery. Critical Care, 2017, 21, 316.	2.5	69
32	Nutrition Therapy in Sepsis. Critical Care Clinics, 2018, 34, 107-125.	1.0	68
33	A Perioperative Medicine Model for Population Health. Anesthesia and Analgesia, 2018, 126, 682-690.	1.1	62
34	Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19. Journal of Cardiovascular Translational Research, 2020, 13, 894-899.	1.1	62
35	Glutamine: role in gut protection in critical illness. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 607-612.	1.3	60
36	Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia. Clinical Nutrition, 2017, 36, 1549-1557.	2.3	60

#	Article	IF	CITATIONS
37	Effect of Hospital Use of Oral Nutritional Supplementation on Length of Stay, Hospital Cost, and 30-Day Readmissions Among Medicare Patients With COPD. Chest, 2015, 147, 1477-1484.	0.4	59
38	Clinical Applications of <scp>l</scp> â€Clutamine: Past, Present, and Future. Nutrition in Clinical Practice, 2003, 18, 377-385.	1.1	57
39	Metabolic support in the critically ill: a consensus of 19. Critical Care, 2019, 23, 318.	2.5	55
40	Lactobacillus rhamnosus GG and Bifidobacterium longum Attenuate Lung Injury and Inflammatory Response in Experimental Sepsis. PLoS ONE, 2014, 9, e97861.	1.1	52
41	Muscle mass and physical recovery in ICU: innovations for targeting of nutrition and exercise. Current Opinion in Critical Care, 2017, 23, 269-278.	1.6	50
42	A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice. Critical Care, 2021, 25, 424.	2.5	48
43	Glutamine preserves cardiomyocyte viability and enhances recovery of contractile function after ischemiaâ€reperfusion injury. Journal of Parenteral and Enteral Nutrition, 2003, 27, 116-122.	1.3	46
44	Lactobacillus rhamnosus GG Improves Outcome in Experimental Pseudomonas aeruginosa Pneumonia. Shock, 2013, 40, 496-503.	1.0	44
45	Are we creating survivors…or victims in critical care? Delivering targeted nutrition to improve outcomes. Current Opinion in Critical Care, 2016, 22, 279-284.	1.6	44
46	Surgical Prehabilitation. Anesthesiology Clinics, 2018, 36, 567-580.	0.6	42
47	Protein-energy nutrition in the ICU is the power couple: A hypothesis forming analysis. Clinical Nutrition, 2016, 35, 968-974.	2.3	41
48	The glutamine story: where are we now?. Current Opinion in Critical Care, 2006, 12, 142-148.	1.6	38
49	Probiotic and synbiotic therapy in the critically ill: State of the art. Nutrition, 2019, 59, 29-36.	1.1	38
50	The clinical evaluation of the new indirect calorimeter developed by the ICALIC project. Clinical Nutrition, 2020, 39, 3105-3111.	2.3	38
51	The evolution of nutrition in critical care: how much, how soon?. Critical Care, 2013, 17, S7.	2.5	35
52	An Evidenceâ€Based Approach to Perioperative Nutrition Support in the Elective Surgery Patient. Journal of Parenteral and Enteral Nutrition, 2013, 37, 39S-50S.	1.3	35
53	Frailty in the End-Stage Lung Disease or Heart Failure Patient: Implications for the Perioperative Transplant Clinician. Journal of Cardiothoracic and Vascular Anesthesia, 2019, 33, 1382-1392. 	0.6	35
54	Glutamine: the first clinically relevant pharmacological regulator of heat shock protein expression?. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 201-206.	1.3	33

#	Article	IF	CITATIONS
55	Current Landscape of Nutrition Within Prehabilitation Oncology Research: A Scoping Review. Frontiers in Nutrition, 2021, 8, 644723.	1.6	33
56	Nutrients and micronutrients at risk during renal replacement therapy: a scoping review. Current Opinion in Critical Care, 2021, 27, 367-377.	1.6	29
57	Randomised, double-blind, placebo-controlled trial of Probiotics To Eliminate COVID-19 Transmission in Exposed Household Contacts (PROTECT-EHC): a clinical trial protocol. BMJ Open, 2021, 11, e047069.	0.8	26
58	Nutritional pharmacology in surgery and critical care. Current Opinion in Anaesthesiology, 2011, 24, 381-388.	0.9	25
59	Blurred Lines. Chest, 2017, 151, 492-499.	0.4	25
60	Prolonged progressive hypermetabolism during COVID-19 hospitalization undetected by common predictive energy equations. Clinical Nutrition ESPEN, 2021, 45, 341-350.	0.5	25
61	Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ï‰â€3 Polyunsaturated Fatty Acids. Journal of Parenteral and Enteral Nutrition, 2016, 40, 52-66.	1.3	24
62	Enteral Nutrition Can Be Given to Patients on Vasopressors. Critical Care Medicine, 2020, 48, 122-125.	0.4	23
63	Tutorial: Development and Implementation of a Multidisciplinary Preoperative Nutrition Optimization Clinic. Journal of Parenteral and Enteral Nutrition, 2020, 44, 1185-1196.	1.3	22
64	Glutamine in Burn Injury. Nutrition in Clinical Practice, 2019, 34, 681-687.	1.1	21
65	Association between early postoperative nutritional supplement utilisation and length of stay in malnourished hip fracture patients. British Journal of Anaesthesia, 2021, 126, 730-737.	1.5	20
66	Alkaline Phosphatase in Infant Cardiopulmonary Bypass: Kinetics and Relationship to Organ Injury and Major Cardiovascular Events. Journal of Pediatrics, 2017, 190, 49-55.e2.	0.9	19
67	Mitochondrial Dysfunction in Critical Illness: Implications for Nutritional Therapy. Current Nutrition Reports, 2019, 8, 363-373.	2.1	19
68	Indirect calorimetry in critical illness: a new standard of care?. Current Opinion in Critical Care, 2021, 27, 334-343.	1.6	19
69	Successful Identification of Anatomical Markers and Placement of Feeding Tubes in Critically III Patients via Cameraâ€Assisted Technology with Realâ€īime Video Guidance. Journal of Parenteral and Enteral Nutrition, 2019, 43, 118-125.	1.3	18
70	Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass. PLoS ONE, 2016, 11, e0158981.	1.1	18
71	Characteristics and Current Practice of Parenteral Nutrition in Hospitalized Patients. Journal of Parenteral and Enteral Nutrition, 2013, 37, 56-67.	1.3	17
72	A RandomizEd trial of ENtERal Glutamine to minimIZE thermal injury (The RE-ENERGIZE Trial): a clinical trial protocol. Scars, Burns & Healing, 2017, 3, 205951311774524.	0.6	17

#	Article	IF	CITATIONS
73	Supplemental Parenteral Nutrition: Review of the Literature and Current Nutrition Guidelines. Nutrition in Clinical Practice, 2018, 33, 359-369.	1.1	16
74	Role of anabolic testosterone agents and structured exercise to promote recovery in ICU survivors. Current Opinion in Critical Care, 2020, 26, 508-515.	1.6	16
75	Perioperative Nutrition Care of Orthopedic Surgery Patient. Techniques in Orthopaedics, 2020, 35, 15-18.	0.1	15
76	Evaluation of malnutrition via modified GLIM criteria for in patients undergoing emergent gastrointestinal surgery. Clinical Nutrition, 2021, 40, 1367-1375.	2.3	15
77	Alkaline Phosphatase Activity and Endotoxemia After Infant Cardiothoracic Surgery. Shock, 2019, 51, 328-336.	1.0	14
78	Glutamine Supplementation in Parenteral Nutrition and Intensive Care Unit Patients. Journal of Parenteral and Enteral Nutrition, 2015, 39, 893-897.	1.3	13
79	Impact of early postoperative oral nutritional supplement utilization on clinical outcomes in colorectal surgery. Perioperative Medicine (London, England), 2020, 9, 29.	0.6	13
80	Review of evolution and current status of protein requirements and provision in acute illness and critical care. Clinical Nutrition, 2021, 40, 2958-2973.	2.3	13
81	A few of our favorite unconfirmed ideas. Critical Care, 2015, 19, S1.	2.5	12
82	Recovery Focused Nutritional Therapy across the Continuum of Care: Learning from COVID-19. Nutrients, 2021, 13, 3293.	1.7	12
83	Preoperative carbohydrate loading in surgical patients with type 2 diabetes: Are concerns supported by data?. Clinical Nutrition ESPEN, 2021, 45, 1-8.	0.5	12
84	Novel approaches to metabolic assessment and structured exercise to promote recovery in ICU survivors. Current Opinion in Critical Care, 2020, Publish Ahead of Print, 369-378.	1.6	11
85	Validation of the perioperative nutrition screen for prediction of postoperative outcomes. Journal of Parenteral and Enteral Nutrition, 2022, 46, 1307-1315.	1.3	11
86	Restoring the Microbiome in Critically III Patients: Are Probiotics Our True Friends When We Are Seriously III?. Journal of Parenteral and Enteral Nutrition, 2017, 41, 530-533.	1.3	10
87	The glutamine debate in surgery and critical care. Current Opinion in Critical Care, 2019, 25, 322-328.	1.6	9
88	Postoperative Utilization of Oral Nutrition Supplements in Surgical Patients in US Hospitals. Journal of Parenteral and Enteral Nutrition, 2021, 45, 596-606.	1.3	9
89	Pointâ€Counterpoint: Indirect Calorimetry Is Essential for Optimal Nutrition Therapy in the Intensive Care Unit. Nutrition in Clinical Practice, 2021, 36, 275-281.	1.1	9
90	Brief Glutamine Pretreatment Increases Alveolar Macrophage CD163/Heme Oxygenase-1/p38-MAPK Dephosphorylation Pathway and Decreases Capillary Damage but Not Neutrophil Recruitment in IL-1/LPS-Insufflated Rats. PLoS ONE, 2015, 10, e0130764.	1.1	9

#	Article	IF	CITATIONS
91	Role of Early Enteral Nutrition in Mechanically Ventilated COVID-19 Patients. , 2022, 4, e0683.		9
92	Alternative Lipid Emulsions as a New Standard of Care for Total Parenteral Nutrition. Critical Care Medicine, 2015, 43, 230-231.	0.4	8
93	Overcoming challenges to enteral nutrition delivery in critical care. Current Opinion in Critical Care, 2021, 27, 169-176.	1.6	8
94	Ensuring Optimal Survival and Post-ICU Quality of Life in High-Risk ICU Patients. Critical Care Medicine, 2015, 43, 1769-1772.	0.4	7
95	Dietary patterns and health-related quality of life in bladder cancer survivors. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 469.e21-469.e29.	0.8	7
96	Can Oral Nutritional Supplements Improve Medicare Patient Outcomes in the Hospital?. Forum for Health Economics and Policy, 2014, 17, 131-151.	0.2	6
97	Seven unconfirmed ideas to improve future ICU practice. Critical Care, 2017, 21, 315.	2.5	6
98	Percutaneous tracheostomy for long-term ventilated COVID-19-patients: rationale and first clinical-safe for all-experience. Anaesthesiology Intensive Therapy, 2020, 52, 366-372.	0.4	6
99	Early oral protein-containing diets following elective lower gastrointestinal tract surgery in adults: a meta-analysis of randomized clinical trials. Perioperative Medicine (London, England), 2021, 10, 10.	0.6	6
100	Glutamine, heat shock protein, and inflammation—opportunity from the midst of difficulty. Nutrition, 2004, 20, 583-585.	1.1	5
101	Diet and Exercise Are not Associated with Skeletal Muscle Mass and Sarcopenia in Patients with Bladder Cancer. European Urology Oncology, 2021, 4, 237-245.	2.6	5
102	Geriatric Assessment Reveals Actionable Impairments in Hematopoietic Stem Cell Transplantation Candidates Age 18 to 80 Years. Transplantation and Cellular Therapy, 2022, 28, 498.e1-498.e9.	0.6	5
103	Extracorporeal membrane oxygenation postcardiotomy: "With great power comes great responsibility― Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 102-103.	0.4	4
104	Role of heat shock protein and cytokine expression as markers of clinical outcomes with glutamine-supplemented parenteral nutrition in surgical ICU patients. Clinical Nutrition, 2020, 39, 563-573.	2.3	4
105	Infant cardiopulmonary bypass: CD73 kinetics, association with clinical outcomes, and influence on serum adenosine production capacity. Pediatric Research, 2018, 83, 858-865.	1.1	3
106	Nutrition Status Optimization for Improved Perioperative Outcomes. Current Anesthesiology Reports, 2022, 12, 59-64.	0.9	3
107	<i>JPEN</i> : State of the Journal. Journal of Parenteral and Enteral Nutrition, 2008, 32, 101-103.	1.3	2
108	ORAL GLUTAMINE DECREASES GUT PERMEABILITY AND IMPROVES SURVIVAL FOLLOWING HEAT STROKE: ROLE OF HEAT SHOCK PROTEIN EXPRESSION Critical Care Medicine, 2005, 33, A34.	0.4	2

#	Article	IF	CITATIONS
109	Commentary on "Guidelines for the provision of nutrition support therapy in the adult critically ill patient: The American Society for Parenteral and Enteral Nutrition― Journal of Parenteral and Enteral Nutrition, 2022, 46, 1223-1225.	1.3	2
110	Editorial: Objective measurement of nutrition and metabolism in the ICU: the future of personalized metabolic therapy. Current Opinion in Critical Care, 2021, 27, 329-333.	1.6	1
111	How Differences in the Disease Process of the COVID-19 Pandemic Pose Challenges to the Delivery of Critical Care Nutrition. Current Nutrition Reports, 2021, 10, 288.	2.1	1
112	Response to "Reassessing the death risk related to probiotics in critically ill patients― Critical Care, 2017, 21, 43.	2.5	0
113	Overcoming confounding by indication in nutrition research using electronic healthcare data. Clinical Nutrition, 2020, 39, 985-987.	2.3	0
114	Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) attenuate cytokine expression in the lungs of weanling mice with peritonitisâ€induced sepsis. FASEB Journal, 2012, 26, 1108.1.	0.2	0
115	Glutamineâ€mediated Dual Regulation of Heat Shock Transcription Factorâ€1 Activation and Expression. FASEB Journal, 2013, 27, .	0.2	0
116	Sarcopenia in bladder cancer patients is an unmodifiable outcomes predictor Journal of Clinical Oncology, 2019, 37, 480-480.	0.8	0
117	Geriatric Assessment Identifies Impairments in Younger Candidates for Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2019, 134, 1984-1984.	0.6	0