Tanja Zimmermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4009144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water. Chemistry of Materials, 2014, 26, 2659-2668.	6.7	511
2	Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 2010, 79, 1086-1093.	10.2	456
3	Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures. Advanced Functional Materials, 2017, 27, 1604619.	14.9	447
4	Amine-Based Nanofibrillated Cellulose As Adsorbent for CO ₂ Capture from Air. Environmental Science & Technology, 2011, 45, 9101-9108.	10.0	367
5	Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose. Biomacromolecules, 2010, 11, 454-464.	5.4	284
6	Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. Journal of Materials Chemistry, 2012, 22, 20105.	6.7	245
7	Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano, 2018, 12, 6926-6937.	14.6	203
8	Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose, 2014, 21, 2831-2844.	4.9	191
9	3D printing of nano-cellulosic biomaterials for medical applications. Current Opinion in Biomedical Engineering, 2017, 2, 29-34.	3.4	155
10	Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydrate Polymers, 2016, 135, 334-340.	10.2	147
11	Single-Component and Binary CO ₂ and H ₂ O Adsorption of Amine-Functionalized Cellulose. Environmental Science & Technology, 2014, 48, 2497-2504.	10.0	138
12	Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose, 2015, 22, 421-433.	4.9	131
13	Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. Journal of Materials Chemistry, 2011, 21, 16066.	6.7	130
14	Fast and Reversible Direct CO ₂ Capture from Air onto All-Polymer Nanofibrillated Cellulose—Polyethylenimine Foams. Environmental Science & Technology, 2015, 49, 3167-3174.	10.0	129
15	Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose, 2014, 21, 367-382.	4.9	128
16	Composites of Cationic Nanofibrillated Cellulose and Layered Silicates: Water Vapor Barrier and Mechanical Properties. ACS Applied Materials & Interfaces, 2012, 4, 4832-4840.	8.0	110
17	Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nordic Pulp and Paper Research Journal, 2014, 29, 167-175.	0.7	108
18	Drying and Pyrolysis of Cellulose Nanofibers from Wood, Bacteria, and Algae for Char Application in Oil Absorption and Dye Adsorption. ACS Sustainable Chemistry and Engineering, 2017, 5, 2679-2692.	6.7	100

TANJA ZIMMERMANN

#	Article	IF	CITATIONS
19	Rheology of nanofibrillated cellulose/acrylate systems for coating applications. Cellulose, 2014, 21, 1313-1326.	4.9	95
20	Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomaterialia, 2011, 7, 3412-3421.	8.3	88
21	TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules. Biomacromolecules, 2015, 16, 3640-3650.	5.4	84
22	Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(<scp>ii</scp>) and a positively charged dye. Soft Matter, 2015, 11, 5294-5300.	2.7	77
23	Multifunctional Nanoclay Hybrids of High Toughness, Thermal, and Barrier Performances. ACS Applied Materials & Interfaces, 2013, 5, 7613-7620.	8.0	71
24	The chemical-free production of nanocelluloses from microcrystalline cellulose and their use as Pickering emulsion stabilizer. Carbohydrate Polymers, 2017, 178, 48-56.	10.2	61
25	3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 2021, 259, 117716.	10.2	59
26	Controlled Silylation of Nanofibrillated Cellulose in Water: Reinforcement of a Model Polydimethylsiloxane Network. ChemSusChem, 2015, 8, 2681-2690.	6.8	57
27	Nanofibrillated cellulose in wood coatings: Dispersion and stabilization of ZnO as UV absorber. Progress in Organic Coatings, 2015, 87, 112-121.	3.9	55
28	A Proteinâ€Nanocellulose Paper for Sensing Copper Ions at the Nano―to Micromolar Level. Advanced Functional Materials, 2017, 27, 1604291.	14.9	54
29	Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds. Advanced Functional Materials, 2020, 30, 1904127.	14.9	54
30	Functional Cellulose Nanofiber Filters with Enhanced Flux for the Removal of Humic Acid by Adsorption. ACS Sustainable Chemistry and Engineering, 2016, 4, 4582-4590.	6.7	52
31	Characterization and mechanical properties investigation of the cellulose/gypsum composite. Journal of Composite Materials, 2016, 50, 657-672.	2.4	51
32	Ultra-Porous Nanocellulose Foams: A Facile and Scalable Fabrication Approach. Nanomaterials, 2019, 9, 1142.	4.1	50
33	Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterisation. Holzforschung, 2005, 59, 240-246.	1.9	48
34	Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose. Reactive and Functional Polymers, 2014, 85, 134-141.	4.1	47
35	Dry, hydrophobic microfibrillated cellulose powder obtained in a simple procedure using alkyl ketene dimer. Cellulose, 2016, 23, 1189-1197.	4.9	47
36	Reinforcement of polycaprolactone with microfibrillated lignocellulose. Industrial Crops and Products, 2016, 93, 302-308.	5.2	46

TANJA ZIMMERMANN

#	Article	IF	CITATIONS
37	Nitrate removal from water using a nanopaper ion-exchanger. Environmental Science: Water Research and Technology, 2016, 2, 117-124.	2.4	46
38	Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. Journal of Applied Polymer Science, 2015, 132, .	2.6	44
39	Influence of Climatic Factors on the Weathering of Coated Wood. European Journal of Wood and Wood Products, 2002, 60, 411-420.	2.9	43
40	Characterization of Pores in Dense Nanopapers and Nanofibrillated Cellulose Membranes: A Critical Assessment of Established Methods. ACS Applied Materials & Interfaces, 2015, 7, 25884-25897.	8.0	42
41	Nanofibrillated cellulose in wood coatings: mechanical properties of free composite films. Journal of Materials Science, 2014, 49, 6437-6448.	3.7	41
42	Mechanical Properties Tailoring of 3D Printed Photoresponsive Nanocellulose Composites. Advanced Functional Materials, 2020, 30, 2002914.	14.9	40
43	Enhanced Antimicrobial Activity and Structural Transitions of a Nanofibrillated Cellulose–Nisin Biocomposite Suspension. ACS Applied Materials & Interfaces, 2018, 10, 20170-20181.	8.0	39
44	Effect of Surface Charge on Surface-Initiated Atom Transfer Radical Polymerization from Cellulose Nanocrystals in Aqueous Media. Biomacromolecules, 2016, 17, 1404-1413.	5.4	37
45	Microfibrillated cellulose foams obtained by a straightforward freeze–thawing–drying procedure. Cellulose, 2017, 24, 3825-3842.	4.9	31
46	Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Composites Part B: Engineering, 2018, 140, 139-144.	12.0	31
47	Reinforcement of Polymeric Submicrometerâ€sized Fibers by Microfibrillated Cellulose. Macromolecular Materials and Engineering, 2012, 297, 576-584.	3.6	28
48	Upgrading flax nonwovens: Nanocellulose as binder to produce rigid and robust flax fibre preforms. Composites Part A: Applied Science and Manufacturing, 2016, 83, 63-71.	7.6	27
49	Deformation and failure mechanism of secondary cell wall inÂSpruce late wood. Applied Physics A: Materials Science and Processing, 2010, 100, 447-452.	2.3	25
50	Structure of cellulose -silica hybrid aerogel at sub-micron scale, studied by synchrotron X-ray tomographic microscopy. Composites Science and Technology, 2016, 124, 71-80.	7.8	20
51	Fibrillation of flax and wheat straw cellulose: Effects on thermal, morphological, and viscoelastic properties of poly(vinylalcohol)/fibre composites. BioResources, 2011, 6, 1631-1647.	1.0	19
52	Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments. Cellulose, 2018, 25, 1127-1146.	4.9	18
53	Polylactide/Montmorillonite Hybrid Latex as a Barrier Coating for Paper Applications. Polymers, 2016, 8, 75.	4.5	17
54	Humic acid desorption from a positively charged nanocellulose surface. Journal of Colloid and Interface Science, 2017, 504, 500-506.	9.4	17

TANJA ZIMMERMANN

#	Article	IF	CITATIONS
55	Simple Green Route to Performance Improvement of Fully Bio-Based Linseed Oil Coating Using Nanofibrillated Cellulose. Polymers, 2017, 9, 425.	4.5	15
56	Nanoparticles capture on cellulose nanofiber depth filters. Carbohydrate Polymers, 2018, 201, 482-489.	10.2	14
57	Deformation of the compound middle lamella in spruce latewood by micro-pillar compression of double cell walls. Journal of Materials Science, 2012, 47, 6125-6130.	3.7	13
58	Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling. Philosophical Magazine, 2016, 96, 3461-3478.	1.6	13
59	Nanofibrillated Cellulose Templated Membranes with High Permeance. ACS Applied Materials & Interfaces, 2016, 8, 33943-33954.	8.0	13
60	Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS Applied Materials & Interfaces, 2022, 14, 16703-16717.	8.0	11
61	Liquid ammonia treatment of (cationic) nanofibrillated cellulose/vermiculite composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 638-648.	2.1	9
62	Celluloseâ€Based Microparticles for Magnetically Controlled Optical Modulation and Sensing. Small, 2020, 16, 1904251.	10.0	9
63	Cellulose Fibrils: Isolation, Characterization, and Capability for Technical Applications. ACS Symposium Series, 2006, , 33-47.	0.5	6
64	Fibrillated cellulose in heterophase polymerization of nanoscale poly(methyl methacrylate) spheres. Colloid and Polymer Science, 2016, 294, 1393-1403.	2.1	6
65	In situ SEM micro-indentation of single wood pulp fibres in transverse direction. Journal of Electron Microscopy, 2010, 59, 345-349.	0.9	4
66	3D Printing: Complexâ€Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds (Adv. Funct. Mater. 4/2020). Advanced Functional Materials, 2020, 30, 2070024.	14.9	2
67	Chemical Functionalization as a Powerful Tool to Broaden the Scope of Applications of Cellulose Nanofibers. Materials and Energy, 2014, , 123-138.	0.1	0
68	Functional Materials from Cellulose Nanofibers. Chimia, 2015, 69, 232-232.	0.6	0