Haris Ch Doukas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4008843/publications.pdf

Version: 2024-02-01

159 papers

4,314 citations

36 h-index 58 g-index

162 all docs $\begin{array}{c} 162 \\ \\ \text{docs citations} \end{array}$

162 times ranked 3461 citing authors

#	Article	IF	Citations
1	A multi-criteria decision support framework for assessing seaport sustainability planning: the case of Piraeus. Maritime Policy and Management, 2023, 50, 1030-1056.	1.9	6
2	A robust augmented $\hat{l}\mu$ -constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems. Operational Research, 2022, 22, 1291-1332.	1.3	13
3	Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece. Energy Policy, 2022, 161, 112759.	4.2	9
4	Coupling circularity performance and climate action: From disciplinary silos to transdisciplinary modelling science. Sustainable Production and Consumption, 2022, 30, 269-277.	5 . 7	11
5	A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective. Renewable and Sustainable Energy Reviews, 2022, 156, 112022.	8.2	17
6	Comparative analysis of Al-based models for short-term photovoltaic power forecasting in energy cooperatives. Intelligent Decision Technologies, 2022, 15, 691-705.	0.6	1
7	A meta-learning classification model for supporting decisions on energy efficiency investments. Energy and Buildings, 2022, 258, 111836.	3.1	27
8	Risks and mitigation strategies in energy efficiency financing: A systematic literature review. Energy Reports, 2022, 8, 1789-1802.	2.5	13
9	Wind repowering: Unveiling a hidden asset. Renewable and Sustainable Energy Reviews, 2022, 162, 112457.	8.2	7
10	Climate and sustainability co-governance in Kenya: A multi-criteria analysis of stakeholders' perceptions and consensus. Energy for Sustainable Development, 2022, 68, 457-471.	2.0	7
11	Parameter analysis for sigmoid and hyperbolic transfer functions of fuzzy cognitive maps. Operational Research, 2022, 22, 5733-5763.	1.3	8
12	Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe. Energy, 2021, 215, 119153.	4.5	57
13	Involve citizens in climate-policy modelling. Nature, 2021, 590, 389-389.	13.7	5
14	What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies, 2021, 14, 2235.	1.6	11
15	Energy and GHG Emissions Aspects of the COVID Impact in Greece. Energies, 2021, 14, 1955.	1.6	10
16	Grouped data, investment committees & multicriteria portfolio selection. Journal of Business Research, 2021, 129, 205-222.	5.8	8
17	Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research, Part D: Transport and Environment, 2021, 94, 102815.	3.2	10
18	Managing the uncertainty of the U-value measurement using an auxiliary set along with a thermal camera. Energy and Buildings, 2021, 242, 110984.	3.1	8

#	Article	IF	Citations
19	Al and Data Democratisation for Intelligent Energy Management. Energies, 2021, 14, 4341.	1.6	16
20	Big Data Value Chain: Multiple Perspectives for the Built Environment. Energies, 2021, 14, 4624.	1.6	11
21	Challenges in the harmonisation of global integrated assessment models: A comprehensive methodology to reduce model response heterogeneity. Science of the Total Environment, 2021, 783, 146861.	3.9	32
22	Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison. Science of the Total Environment, 2021, 793, 148549.	3.9	26
23	Integrating Integrated Assessment Modelling in Support of the Paris Agreement: The I2AM PARIS Platform., 2021,,.		2
24	Forecasting of short-term PV production in energy communities through Machine Learning and Deep Learning algorithms. , 2021, , .		7
25	Leveraging Energy Efficiency Investments: An Innovative Web-based Benchmarking Tool. Advances in Science, Technology and Engineering Systems, 2021, 6, 237-248.	0.4	7
26	A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nature Climate Change, 2021, 11, 1055-1062.	8.1	69
27	An integrated methodological framework to support decisions on problems of the Greek natural gas market. International Journal of Decision Support Systems, 2021, 4, 313.	0.1	0
28	Participatory multi-criteria decision analysis for sustainable energy planning. International Journal of Multicriteria Decision Making, 2021, 8, 276.	0.1	4
29	Towards Sustainable Development and Climate Co-governance: A Multicriteria Stakeholders' Perspective. Multiple Criteria Decision Making, 2021, , 39-74.	0.6	5
30	From big data to smart energy services: An application for intelligent energy management. Future Generation Computer Systems, 2020, 110 , $572-586$.	4.9	103
31	Barriers to and consequences of a solar-based energy transition in Greece. Environmental Innovation and Societal Transitions, 2020, 35, 383-399.	2.5	63
32	Decision support models in climate policy. European Journal of Operational Research, 2020, 280, 1-24.	3.5	84
33	Pathways for the transition of the Polish power sector and associated risks. Environmental Innovation and Societal Transitions, 2020, 35, 271-291.	2.5	49
34	Hedging uncertainty in energy efficiency strategies: a minimax regret analysis. Operational Research, 2020, 20, 2229-2244.	1.3	3
35	Contested energy futures, conflicted rewards? Examining low-carbon transition risks and governance dynamics in China's built environment. Energy Research and Social Science, 2020, 59, 101306.	3.0	30
36	The desirability of transitions in demand: Incorporating behavioural and societal transformations into energy modelling. Energy Research and Social Science, 2020, 70, 101780.	3.0	41

#	Article	IF	Citations
37	Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement. Sustainability, 2020, 12, 5832.	1.6	14
38	A multiple-uncertainty analysis framework for integrated assessment modelling of several sustainable development goals. Environmental Modelling and Software, 2020, 131, 104795.	1.9	19
39	The Efforts towards and Challenges of Greece's Post-Lignite Era: The Case of Megalopolis. Sustainability, 2020, 12, 10575.	1.6	16
40	Editorial of special issue on transdisciplinary science in energy transitions: thinking outside strictly formalized modeling boxes. Energy Sources, Part B: Economics, Planning and Policy, 2020, 15, 453-454.	1.8	1
41	The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective. Energies, 2020, 13, 4994.	1.6	17
42	The Green Versus Green Trap and a Way Forward. Energies, 2020, 13, 5473.	1.6	14
43	The importance of stakeholders in scoping risk assessments—Lessons from low-carbon transitions. Environmental Innovation and Societal Transitions, 2020, 35, 400-413.	2.5	25
44	From Intelligent Energy Management to Value Economy through a Digital Energy Currency: Bahrain City Case Study. Sensors, 2020, 20, 1456.	2.1	15
45	Multi-perspective design of energy efficiency policies under the framework of national energy and climate action plans. Energy Policy, 2020, 140, 111401.	4.2	18
46	Sustainable energy transition readiness: A multicriteria assessment index. Renewable and Sustainable Energy Reviews, 2020, 131, 109988.	8.2	117
47	Energy poverty alleviation: effective policies, best practices and innovative schemes. Energy Sources, Part B: Economics, Planning and Policy, 2020, 15, 45-48.	1.8	17
48	Optimal Design of an Islanded Microgrid With Load Shifting Mechanism Between Electrical and Thermal Energy Storage Systems. IEEE Transactions on Power Systems, 2020, 35, 2642-2657.	4.6	53
49	An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation. Sustainability, 2020, 12, 2886.	1.6	41
50	APOLLO: A Fuzzy Multi-criteria Group Decision-Making Tool in Support of Climate Policy. International Journal of Computational Intelligence Systems, 2020, 13, 1539.	1.6	12
51	Integrated policy assessment and optimisation over multiple sustainable development goals in Eastern Africa. Environmental Research Letters, 2019, 14, 094001.	2.2	27
52	Supporting Europe's Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment. Sustainability, 2019, 11, 4010.	1.6	16
53	Identifying optimal technological portfolios for European power generation towards climate change mitigation: A robust portfolio analysis approach. Utilities Policy, 2019, 57, 33-42.	2.1	21
54	Intelligent Energy Management Within the Smart Cities: An EU-GCC Cooperation Opportunity. , 2019, , 123-147.		4

#	Article	IF	Citations
55	Investments in the EU Power System: A Stress Test Analysis on the Effectiveness of Decarbonisation Policies., 2019,, 97-122.		3
56	Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets. Energy, 2019, 170, 818-831.	4.5	36
57	A semi-quantitative modelling application for assessing energy efficiency strategies. Applied Soft Computing Journal, 2019, 76, 140-155.	4.1	33
58	A Detailed Overview and Consistent Classification of Climate-Economy Models. , 2019, , 1-54.		21
59	Tracking the performance of photovoltaic systems: a tool for minimising the risk of malfunctions and deterioration. IET Renewable Power Generation, 2018, 12, 815-822.	1.7	6
60	A group decision making tool for assessing climate policy risks against multiple criteria. Heliyon, 2018, 4, e00588.	1.4	41
61	Expert views on low-carbon transition strategies for the Dutch solar sector: A delay-based fuzzy cognitive mapping approach. IFAC-PapersOnLine, 2018, 51, 715-720.	0.5	6
62	Digitizing Energy Savings in Sustainable Smart Cities: Introducing a Virtual Energy-Currency Approach. , 2018, , .		3
63	From Integrated to Integrative: Delivering on the Paris Agreement. Sustainability, 2018, 10, 2299.	1.6	65
64	International Cooperation for Clean Electricity: A UTASTAR Application in Energy Policy. Multiple Criteria Decision Making, 2018, , 163-186.	0.6	3
65	Cooperation or Localization in European Capacity Markets? A Coalitional Game over Graph Approach. Energies, 2018, 11, 1473.	1.6	5
66	On the appraisal of "Triple-A―energy efficiency investments. Energy Sources, Part B: Economics, Planning and Policy, 2018, 13, 320-327.	1.8	17
67	An Advanced IoT-based System for Intelligent Energy Management in Buildings. Sensors, 2018, 18, 610.	2.1	133
68	Analysis of policy scenarios for achieving renewable energy sources targets: A fuzzy TOPSIS approach. Energy and Environment, 2017, 28, 88-109.	2.7	33
69	Renewable energy policy dialogue towards 2030 – Editorial of the special issue. Energy and Environment, 2017, 28, 5-10.	2.7	1
70	A Decision Support Framework for Smart Cities Energy Assessment and Optimization. Energy Procedia, 2017, 111, 800-809.	1.8	30
71	Risk-based analysis and policy implications for renewable energy investments in Greece. Energy Policy, 2017, 105, 512-523.	4.2	75
72	Managing stakeholder knowledge for the evaluation of innovation systems in the face of climate change. Journal of Knowledge Management, 2017, 21, 1013-1034.	3.2	36

#	Article	IF	Citations
73	Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan. Omega, 2017, 69, 1-16.	3.6	73
74	Decision Support for Intelligent Energy Management in Buildings Using the Thermal Comfort Model. International Journal of Computational Intelligence Systems, 2017, 10, 882.	1.6	26
75	OPTIMUS decision support tools: Transforming multidisciplinary data to energy management action plans. , 2016, , .		3
76	Integrating a decision support system with smart grid infrastructures and ICT solutions towards energy cost reduction: An action plan to optimally schedule the operation of heating and electricity systems. , 2016 , , .		5
77	Policy dialogue on the assessment and convergence of renewable energy policy in EU member states. Energy and Environment, 2016, 27, 5-9.	2.7	1
78	Qualification roadmap empowering the Greek building sector workforce in the field of energy. Renewable and Sustainable Energy Reviews, 2016, 65, 992-1004.	8.2	4
79	A modelling framework for the forecasting of energy consumption and CO _{2 emissions at local/regional level. International Journal of Global Energy Issues, 2016, 39, 444.}	0.2	5
80	Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach. Profiles in Operations Research, 2016, , 239-263.	0.3	9
81	How "OPTIMUS―is a city in terms of energy optimization? e-SCEAF: A web based decision support tool for local authorities. Information Fusion, 2016, 29, 149-161.	11.7	20
82	Enabling local authorities to produce short-term energy plans. Management of Environmental Quality, 2016, 27, 146-166.	2.2	14
83	Distribution transformers failures: How does it cost? Evidence from Greece. Energy Systems, 2016, 7, 601-613.	1.8	4
84	Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model. Annals of Operations Research, 2016, 247, 395-413.	2.6	15
85	A Framework to Assess the Behavior and Performance of a City Towards Energy Optimization. Studies in Computational Intelligence, 2016, , 189-205.	0.7	2
86	A web tool for sustainable energy communities. International Journal of Information and Decision Sciences, 2015, 7, 18.	0.1	11
87	A framework for integrating user experience in action plan evaluation through social media: Transforming user generated content into knowledge to optimise energy use in buildings. , 2015, , .		0
88	A web tool for assessing the energy use of buildings in Greece: First results from real life application. , 2015, , .		2
89	Advanced ICT platform for real-time monitoring and infrastructure efficiency at the city level. , 2015, , .		10
90	Robustness analysis in Multi-Objective Mathematical Programming using Monte Carlo simulation. European Journal of Operational Research, 2015, 240, 193-201.	3.5	27

#	Article	IF	Citations
91	Proposing a Smart City Energy Assessment Framework linking local vision with data sets. , 2014, , .		4
92	An Information Management Software for assessing smart energy systems exploiting cities' multidisciplinary data., 2014,,.		6
93	Linguistic multi-criteria decision making for energy and environmental corporate policy. Information Sciences, 2014, 258, 328-338.	4.0	34
94	Foresight for Energy Policy: Techniques and Methods Employed in Greece. Energy Sources, Part B: Economics, Planning and Policy, 2014, 9, 109-119.	1.8	15
95	Integrating analysts' forecasts in the security screening process: empirical evidence from the Eurostoxx 50. Applied Financial Economics, 2013, 23, 685-699.	0.5	2
96	Modelling of linguistic variables in multicriteria energy policy support. European Journal of Operational Research, 2013, 227, 227-238.	3.5	38
97	An integrated system for buildings' energy-efficient automation: Application in the tertiary sector. Applied Energy, 2013, 101, 6-14.	5.1	123
98	A building automation and control tool for remote and real time monitoring of energy consumption. Sustainable Cities and Society, 2013, 6, 11-15.	5.1	45
99	Linguistic multicriteria decision making for energy systems: building the â€~ <scp>RE</scp> ₂ <scp>S</scp> 候 framework. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 571-585.	1.9	12
100	Assessing the socioeconomic effects caused by overvoltages to residential blocks: the case of Greece. International Journal of Green Economics, 2013, 7, 320.	0.4	1
101	EUâ€GCC cooperation for natural gas: prospects and challenges. International Journal of Energy Sector Management, 2013, 7, 194-222.	1.2	11
102	EU-GCC Clean Energy Network. International Journal of Energy Sector Management, 2013, 7, .	1.2	2
103	"Greening―the Hellenic Corporate Energy Policy: An Integrated Decision Support Framework. International Journal of Green Energy, 2012, 9, 487-502.	2.1	12
104	Carbon market and technology transfer: statistical analysis for exploring implications. International Journal of Sustainable Development and World Ecology, 2012, 19, 311-320.	3.2	8
105	Promoting renewables in the energy sector of Tajikistan. Renewable Energy, 2012, 39, 411-418.	4.3	23
106	Assessing energy sustainability of rural communities using Principal Component Analysis. Renewable and Sustainable Energy Reviews, 2012, 16, 1949-1957.	8.2	110
107	Risks on the Security of Oil and Gas Supply. Energy Sources, Part B: Economics, Planning and Policy, 2011, 6, 417-425.	1.8	47
108	CDM sustainable technology transfer grounded in participatory in-country processes in Israel. International Journal of Sustainable Society, 2011, 3, 225.	0.0	10

#	Article	IF	Citations
109	Hydro energy: techno-economic and social aspects within new climate regime. International Journal of Renewable Energy Technology, 2011, 2, 32.	0.2	6
110	Graph theoryâ€based approach for energy corridors network to Greece. International Journal of Energy Sector Management, 2011, 5, 60-80.	1.2	11
111	Electric power transmission: An overview of associated burdens. International Journal of Energy Research, 2011, 35, 979-988.	2.2	42
112	The potential role of renewable energy in Moldova. Renewable Energy, 2011, 36, 3550-3557.	4.3	4
113	Using Biomass to Achieve European Union Energy Targets—A Review of Biomass Status, Potential, and Supporting Policies. International Journal of Green Energy, 2011, 8, 411-428.	2.1	31
114	Tools and Mechanisms Fostering EU GCC Cooperation on Energy Efficiency., 2011,,.		4
115	Web tool for the quantification of oil and gas corridors' socioâ€economic risks. International Journal of Energy Sector Management, 2010, 4, 213-235.	1.2	17
116	Sustainable energy technology transfers through the CDM? Application of participatory approaches for decision making facilitation. International Journal of Environmental Policy and Decision Making, $2010, 1, 1$.	0.1	10
117	The challenge of an EU-GCC clean energy network. International Journal of Global Energy Issues, 2010, 33, 176.	0.2	13
118	Establishment of a European energy policy think-tank: necessity or luxury?. International Journal of Global Energy Issues, 2010, 33, 221.	0.2	8
119	EU–MENA energy technology transfer under the CDM: Israel as a frontrunner?. Energy Policy, 2010, 38, 2455-2462.	4.2	23
120	Data validation platform for the sophisticated monitoring and communication of the energy technology sector. Renewable Energy, 2010, 35, 931-935.	4.3	6
121	Technology transfer through climate change: Setting a sustainable energy pattern. Renewable and Sustainable Energy Reviews, 2010, 14, 1546-1557.	8.2	78
122	Computing with words to assess the sustainability of renewable energy options. Expert Systems With Applications, 2010, 37, 5491-5497.	4.4	147
123	Setting Technology Transfer Priorities with CDM-SET. , 2010, , 205-222.		0
124	Intelligent Information Systems for Strengthening the Quality of Energy Services in the EU. , 2010, , 423-437.		0
125	A linguistic TOPSIS model to evaluate the sustainability of renewable energy options. International Journal of Global Energy Issues, 2009, 32, 102.	0.2	22
126	A Linguistic Decision Support Model towards the Promotion of Renewable Energy. Energy Sources, Part B: Economics, Planning and Policy, 2009, 4, 166-178.	1.8	24

#	Article	IF	Citations
127	Directing clean development mechanism towards developing countries' sustainable development priorities. Energy for Sustainable Development, 2009, 13, 77-84.	2.0	49
128	Sustainable energy technologies in Israel under the CDM: Needs and prospects. Renewable Energy, 2009, 34, 1399-1406.	4.3	13
129	Energy research and technology development data collection strategies: The case of Greece. Renewable and Sustainable Energy Reviews, 2009, 13, 682-688.	8.2	14
130	RES technology transfer within the new climate regime: A "helicopter―view under the CDM. Renewable and Sustainable Energy Reviews, 2009, 13, 1138-1143.	8.2	58
131	Assessing energy-saving measures in buildings through an intelligent decision support model. Building and Environment, 2009, 44, 290-298.	3.0	113
132	Energy RTD expenditures in the European union: Data gathering procedures and results towards a scientific reference system. Applied Energy, 2009, 86, 452-459.	5.1	11
133	Review & analysis of oil & gas incidents related to the supply interruptions. , 2009, , .		2
134	Shaping sustainable development strategies in Chile through CDM. International Journal of Climate Change Strategies and Management, 2009, 1, 382-399.	1.5	9
135	An intelligent decision support system for SMEs' activation in the energy sector. International Journal of Management and Decision Making, 2009, 10, 125.	0.1	1
136	Policy oriented review for photovoltaics introduction in the EU. International Journal of Renewable Energy Technology, 2009, 1, 64.	0.2	10
137	A linguistic multicriteria analysis system combining fuzzy sets theory, ideal and anti-ideal points for location site selection. Expert Systems With Applications, 2008, 35, 2041-2048.	4.4	71
138	EU and Asian countries policies and programmes for the diffusion of sustainable energy technologies. Asia Europe Journal, 2008, 6, 261-276.	0.7	18
139	Sustainable energy policy indicators: Review and recommendations. Renewable Energy, 2008, 33, 966-973.	4.3	100
140	Sustainable reference methodology for energy end-use efficiency data in the EU. Renewable and Sustainable Energy Reviews, 2008, 12, 2159-2176.	8.2	20
141	Energy Policy Making: An Old Concept or a Modern Challenge?. Energy Sources, Part B: Economics, Planning and Policy, 2008, 3, 362-371.	1.8	37
142	Foresight of innovative energy technologies through a multi criteria approach. International Journal of Energy Technology and Policy, 2008, 6, 381.	0.1	6
143	A Decision Support Approach for the Sustainable Transfer of Energy Technologies under the Kyoto Protocol. American Journal of Applied Sciences, 2008, 5, 1720-1729.	0.1	27
144	PROMOTING RENEWABLE ENERGIES AND ENERGY EFFICIENCY THROUGH THE CDM FUNDING OPTIONS. , 2007, , .		1

9

#	Article	IF	CITATIONS
145	Intelligent building energy management system using rule sets. Building and Environment, 2007, 42, 3562-3569.	3.0	266
146	Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables. European Journal of Operational Research, 2007, 182, 844-855.	3.5	138
147	An assessment of the sustainable energy investments in the framework of the EU–GCC cooperation. Renewable Energy, 2007, 32, 1689-1704.	4.3	12
148	A methodology for validating the renewable energy data in EU. Renewable Energy, 2007, 32, 1981-1998.	4.3	26
149	Assessing the renewable energy producers' environment in EU accession member states. Energy Conversion and Management, 2007, 48, 890-897.	4.4	55
150	Designing an appropriate ESCOs' environment in the Mediterranean. Management of Environmental Quality, 2006, 17, 538-554.	2.2	13
151	Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts. Energy Policy, 2006, 34, 3719-3726.	4.2	73
152	Renewable energy sources and rationale use of energy development in the countries of GCC: Myth or reality?. Renewable Energy, 2006, 31, 755-770.	4.3	105
153	Supporting sustainable electricity technologies in Greece using MCDM. Resources Policy, 2006, 31, 129-136.	4.2	77
154	A reform strategy of the energy sector of the 12 countries of North Africa and the Eastern Mediterranean. Energy Conversion and Management, 2006, 47, 1913-1926.	4.4	14
155	CDM-PAT: a decision support tool for the pre-assessment of CDM projects. International Journal of Computer Applications in Technology, 2005, 22, 80.	0.3	7
156	Application of the IDEA-AM (Integrated Development and Environmental Additionality â€" Assessment) Tj ETQq0 2004, 4, 119-145.	0 0 rgBT /0 1.3	Overlock 10 ²
157	How Successful are Energy Efficiency Investments? A Comparative Analysis for Classification $\&$ Performance Prediction. Computational Economics, 0, , 1.	1.5	3
158	EU—GCC Clean Energy Cooperation. , 0, , 288-308.		2
159	EU—GCC Clean Energy Cooperation. , 0, , 221-241.		0