Haris Ch Doukas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4008843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intelligent building energy management system using rule sets. Building and Environment, 2007, 42, 3562-3569.	3.0	266
2	Computing with words to assess the sustainability of renewable energy options. Expert Systems With Applications, 2010, 37, 5491-5497.	4.4	147
3	Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables. European Journal of Operational Research, 2007, 182, 844-855.	3.5	138
4	An Advanced IoT-based System for Intelligent Energy Management in Buildings. Sensors, 2018, 18, 610.	2.1	133
5	An integrated system for buildings' energy-efficient automation: Application in the tertiary sector. Applied Energy, 2013, 101, 6-14.	5.1	123
6	Sustainable energy transition readiness: A multicriteria assessment index. Renewable and Sustainable Energy Reviews, 2020, 131, 109988.	8.2	117
7	Assessing energy-saving measures in buildings through an intelligent decision support model. Building and Environment, 2009, 44, 290-298.	3.0	113
8	Assessing energy sustainability of rural communities using Principal Component Analysis. Renewable and Sustainable Energy Reviews, 2012, 16, 1949-1957.	8.2	110
9	Renewable energy sources and rationale use of energy development in the countries of GCC: Myth or reality?. Renewable Energy, 2006, 31, 755-770.	4.3	105
10	From big data to smart energy services: An application for intelligent energy management. Future Generation Computer Systems, 2020, 110, 572-586.	4.9	103
11	Sustainable energy policy indicators: Review and recommendations. Renewable Energy, 2008, 33, 966-973.	4.3	100
12	Decision support models in climate policy. European Journal of Operational Research, 2020, 280, 1-24.	3.5	84
13	Technology transfer through climate change: Setting a sustainable energy pattern. Renewable and Sustainable Energy Reviews, 2010, 14, 1546-1557.	8.2	78
14	Supporting sustainable electricity technologies in Greece using MCDM. Resources Policy, 2006, 31, 129-136.	4.2	77
15	Risk-based analysis and policy implications for renewable energy investments in Greece. Energy Policy, 2017, 105, 512-523.	4.2	75
16	Enhancing renewable energy in the Arab States of the Gulf: Constraints & efforts. Energy Policy, 2006, 34, 3719-3726.	4.2	73
17	Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan. Omega, 2017, 69, 1-16.	3.6	73
18	A linguistic multicriteria analysis system combining fuzzy sets theory, ideal and anti-ideal points for location site selection. Expert Systems With Applications, 2008, 35, 2041-2048.	4.4	71

#	Article	IF	CITATIONS
19	A multi-model analysis of long-term emissions and warming implications of current mitigation efforts. Nature Climate Change, 2021, 11, 1055-1062.	8.1	69
20	From Integrated to Integrative: Delivering on the Paris Agreement. Sustainability, 2018, 10, 2299.	1.6	65
21	Barriers to and consequences of a solar-based energy transition in Greece. Environmental Innovation and Societal Transitions, 2020, 35, 383-399.	2.5	63
22	RES technology transfer within the new climate regime: A "helicopter―view under the CDM. Renewable and Sustainable Energy Reviews, 2009, 13, 1138-1143.	8.2	58
23	Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe. Energy, 2021, 215, 119153.	4.5	57
24	Assessing the renewable energy producers' environment in EU accession member states. Energy Conversion and Management, 2007, 48, 890-897.	4.4	55
25	Optimal Design of an Islanded Microgrid With Load Shifting Mechanism Between Electrical and Thermal Energy Storage Systems. IEEE Transactions on Power Systems, 2020, 35, 2642-2657.	4.6	53
26	Directing clean development mechanism towards developing countries' sustainable development priorities. Energy for Sustainable Development, 2009, 13, 77-84.	2.0	49
27	Pathways for the transition of the Polish power sector and associated risks. Environmental Innovation and Societal Transitions, 2020, 35, 271-291.	2.5	49
28	Risks on the Security of Oil and Gas Supply. Energy Sources, Part B: Economics, Planning and Policy, 2011, 6, 417-425.	1.8	47
29	A building automation and control tool for remote and real time monitoring of energy consumption. Sustainable Cities and Society, 2013, 6, 11-15.	5.1	45
30	Electric power transmission: An overview of associated burdens. International Journal of Energy Research, 2011, 35, 979-988.	2.2	42
31	A group decision making tool for assessing climate policy risks against multiple criteria. Heliyon, 2018, 4, e00588.	1.4	41
32	The desirability of transitions in demand: Incorporating behavioural and societal transformations into energy modelling. Energy Research and Social Science, 2020, 70, 101780.	3.0	41
33	An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation. Sustainability, 2020, 12, 2886.	1.6	41
34	Modelling of linguistic variables in multicriteria energy policy support. European Journal of Operational Research, 2013, 227, 227-238.	3.5	38
35	Energy Policy Making: An Old Concept or a Modern Challenge?. Energy Sources, Part B: Economics, Planning and Policy, 2008, 3, 362-371.	1.8	37
36	Managing stakeholder knowledge for the evaluation of innovation systems in the face of climate change. Journal of Knowledge Management, 2017, 21, 1013-1034.	3.2	36

#	Article	IF	CITATIONS
37	Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets. Energy, 2019, 170, 818-831.	4.5	36
38	Linguistic multi-criteria decision making for energy and environmental corporate policy. Information Sciences, 2014, 258, 328-338.	4.0	34
39	Analysis of policy scenarios for achieving renewable energy sources targets: A fuzzy TOPSIS approach. Energy and Environment, 2017, 28, 88-109.	2.7	33
40	A semi-quantitative modelling application for assessing energy efficiency strategies. Applied Soft Computing Journal, 2019, 76, 140-155.	4.1	33
41	Challenges in the harmonisation of global integrated assessment models: A comprehensive methodology to reduce model response heterogeneity. Science of the Total Environment, 2021, 783, 146861.	3.9	32
42	Using Biomass to Achieve European Union Energy Targets—A Review of Biomass Status, Potential, and Supporting Policies. International Journal of Green Energy, 2011, 8, 411-428.	2.1	31
43	A Decision Support Framework for Smart Cities Energy Assessment and Optimization. Energy Procedia, 2017, 111, 800-809.	1.8	30
44	Contested energy futures, conflicted rewards? Examining low-carbon transition risks and governance dynamics in China's built environment. Energy Research and Social Science, 2020, 59, 101306.	3.0	30
45	Robustness analysis in Multi-Objective Mathematical Programming using Monte Carlo simulation. European Journal of Operational Research, 2015, 240, 193-201.	3.5	27
46	Integrated policy assessment and optimisation over multiple sustainable development goals in Eastern Africa. Environmental Research Letters, 2019, 14, 094001.	2.2	27
47	A Decision Support Approach for the Sustainable Transfer of Energy Technologies under the Kyoto Protocol. American Journal of Applied Sciences, 2008, 5, 1720-1729.	0.1	27
48	A meta-learning classification model for supporting decisions on energy efficiency investments. Energy and Buildings, 2022, 258, 111836.	3.1	27
49	A methodology for validating the renewable energy data in EU. Renewable Energy, 2007, 32, 1981-1998.	4.3	26
50	Where is the EU headed given its current climate policy? A stakeholder-driven model inter-comparison. Science of the Total Environment, 2021, 793, 148549.	3.9	26
51	Decision Support for Intelligent Energy Management in Buildings Using the Thermal Comfort Model. International Journal of Computational Intelligence Systems, 2017, 10, 882.	1.6	26
52	The importance of stakeholders in scoping risk assessments—Lessons from low-carbon transitions. Environmental Innovation and Societal Transitions, 2020, 35, 400-413.	2.5	25
53	A Linguistic Decision Support Model towards the Promotion of Renewable Energy. Energy Sources, Part B: Economics, Planning and Policy, 2009, 4, 166-178.	1.8	24
54	EU–MENA energy technology transfer under the CDM: Israel as a frontrunner?. Energy Policy, 2010, 38, 2455-2462.	4.2	23

#	Article	IF	CITATIONS
55	Promoting renewables in the energy sector of Tajikistan. Renewable Energy, 2012, 39, 411-418.	4.3	23
56	A linguistic TOPSIS model to evaluate the sustainability of renewable energy options. International Journal of Global Energy Issues, 2009, 32, 102.	0.2	22
57	Identifying optimal technological portfolios for European power generation towards climate change mitigation: A robust portfolio analysis approach. Utilities Policy, 2019, 57, 33-42.	2.1	21
58	A Detailed Overview and Consistent Classification of Climate-Economy Models. , 2019, , 1-54.		21
59	Sustainable reference methodology for energy end-use efficiency data in the EU. Renewable and Sustainable Energy Reviews, 2008, 12, 2159-2176.	8.2	20
60	How "OPTIMUS―is a city in terms of energy optimization? e-SCEAF: A web based decision support tool for local authorities. Information Fusion, 2016, 29, 149-161.	11.7	20
61	A multiple-uncertainty analysis framework for integrated assessment modelling of several sustainable development goals. Environmental Modelling and Software, 2020, 131, 104795.	1.9	19
62	EU and Asian countries policies and programmes for the diffusion of sustainable energy technologies. Asia Europe Journal, 2008, 6, 261-276.	0.7	18
63	Multi-perspective design of energy efficiency policies under the framework of national energy and climate action plans. Energy Policy, 2020, 140, 111401.	4.2	18
64	Web tool for the quantification of oil and gas corridors' socioâ€economic risks. International Journal of Energy Sector Management, 2010, 4, 213-235.	1.2	17
65	On the appraisal of "Triple-A―energy efficiency investments. Energy Sources, Part B: Economics, Planning and Policy, 2018, 13, 320-327.	1.8	17
66	The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective. Energies, 2020, 13, 4994.	1.6	17
67	Energy poverty alleviation: effective policies, best practices and innovative schemes. Energy Sources, Part B: Economics, Planning and Policy, 2020, 15, 45-48.	1.8	17
68	A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective. Renewable and Sustainable Energy Reviews, 2022, 156, 112022.	8.2	17
69	Supporting Europe's Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment. Sustainability, 2019, 11, 4010.	1.6	16
70	The Efforts towards and Challenges of Greece's Post-Lignite Era: The Case of Megalopolis. Sustainability, 2020, 12, 10575.	1.6	16
71	Al and Data Democratisation for Intelligent Energy Management. Energies, 2021, 14, 4341.	1.6	16
72	Foresight for Energy Policy: Techniques and Methods Employed in Greece. Energy Sources, Part B: Economics, Planning and Policy, 2014, 9, 109-119.	1.8	15

#	Article	IF	CITATIONS
73	Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model. Annals of Operations Research, 2016, 247, 395-413.	2.6	15
74	From Intelligent Energy Management to Value Economy through a Digital Energy Currency: Bahrain City Case Study. Sensors, 2020, 20, 1456.	2.1	15
75	A reform strategy of the energy sector of the 12 countries of North Africa and the Eastern Mediterranean. Energy Conversion and Management, 2006, 47, 1913-1926.	4.4	14
76	Energy research and technology development data collection strategies: The case of Greece. Renewable and Sustainable Energy Reviews, 2009, 13, 682-688.	8.2	14
77	Enabling local authorities to produce short-term energy plans. Management of Environmental Quality, 2016, 27, 146-166.	2.2	14
78	Many Miles to Paris: A Sectoral Innovation System Analysis of the Transport Sector in Norway and Canada in Light of the Paris Agreement. Sustainability, 2020, 12, 5832.	1.6	14
79	The Green Versus Green Trap and a Way Forward. Energies, 2020, 13, 5473.	1.6	14
80	Designing an appropriate ESCOs' environment in the Mediterranean. Management of Environmental Quality, 2006, 17, 538-554.	2.2	13
81	Sustainable energy technologies in Israel under the CDM: Needs and prospects. Renewable Energy, 2009, 34, 1399-1406.	4.3	13
82	The challenge of an EU-GCC clean energy network. International Journal of Global Energy Issues, 2010, 33, 176.	0.2	13
83	A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems. Operational Research, 2022, 22, 1291-1332.	1.3	13
84	Risks and mitigation strategies in energy efficiency financing: A systematic literature review. Energy Reports, 2022, 8, 1789-1802.	2.5	13
85	An assessment of the sustainable energy investments in the framework of the EU–GCC cooperation. Renewable Energy, 2007, 32, 1689-1704.	4.3	12
86	"Greening―the Hellenic Corporate Energy Policy: An Integrated Decision Support Framework. International Journal of Green Energy, 2012, 9, 487-502.	2.1	12
87	Linguistic multicriteria decision making for energy systems: building the â€~ <scp>RE</scp> ₂ <scp>S</scp> ' framework. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 571-585.	1.9	12
88	APOLLO: A Fuzzy Multi-criteria Group Decision-Making Tool in Support of Climate Policy. International Journal of Computational Intelligence Systems, 2020, 13, 1539.	1.6	12
89	Energy RTD expenditures in the European union: Data gathering procedures and results towards a scientific reference system. Applied Energy, 2009, 86, 452-459.	5.1	11
90	Graph theoryâ€based approach for energy corridors network to Greece. International Journal of Energy Sector Management, 2011, 5, 60-80.	1.2	11

6

#	Article	IF	CITATIONS
91	EUâ€GCC cooperation for natural gas: prospects and challenges. International Journal of Energy Sector Management, 2013, 7, 194-222.	1.2	11
92	A web tool for sustainable energy communities. International Journal of Information and Decision Sciences, 2015, 7, 18.	0.1	11
93	What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece. Energies, 2021, 14, 2235.	1.6	11
94	Big Data Value Chain: Multiple Perspectives for the Built Environment. Energies, 2021, 14, 4624.	1.6	11
95	Coupling circularity performance and climate action: From disciplinary silos to transdisciplinary modelling science. Sustainable Production and Consumption, 2022, 30, 269-277.	5.7	11
96	Policy oriented review for photovoltaics introduction in the EU. International Journal of Renewable Energy Technology, 2009, 1, 64.	0.2	10
97	Sustainable energy technology transfers through the CDM? Application of participatory approaches for decision making facilitation. International Journal of Environmental Policy and Decision Making, 2010, 1, 1.	0.1	10
98	CDM sustainable technology transfer grounded in participatory in-country processes in Israel. International Journal of Sustainable Society, 2011, 3, 225.	0.0	10
99	Advanced ICT platform for real-time monitoring and infrastructure efficiency at the city level. , 2015, ,		10
100	Energy and GHG Emissions Aspects of the COVID Impact in Greece. Energies, 2021, 14, 1955.	1.6	10
101	Low-cost emissions cuts in container shipping: Thinking inside the box. Transportation Research, Part D: Transport and Environment, 2021, 94, 102815.	3.2	10
102	Application of the IDEA-AM (Integrated Development and Environmental Additionality — Assessment) Tj ETQq0 2004, 4, 119-145.	0 0 rgBT / 1.3	Overlock 10 9
103	Shaping sustainable development strategies in Chile through CDM. International Journal of Climate Change Strategies and Management, 2009, 1, 382-399.	1.5	9
104	Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach. Profiles in Operations Research, 2016, , 239-263.	0.3	9
105	Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece. Energy Policy, 2022, 161, 112759.	4.2	9
106	Establishment of a European energy policy think-tank: necessity or luxury?. International Journal of Global Energy Issues, 2010, 33, 221.	0.2	8
107	Carbon market and technology transfer: statistical analysis for exploring implications. International Journal of Sustainable Development and World Ecology, 2012, 19, 311-320.	3.2	8
108	Grouped data, investment committees & multicriteria portfolio selection. Journal of Business Research, 2021, 129, 205-222.	5.8	8

#	Article	IF	CITATIONS
109	Managing the uncertainty of the U-value measurement using an auxiliary set along with a thermal camera. Energy and Buildings, 2021, 242, 110984.	3.1	8
110	Parameter analysis for sigmoid and hyperbolic transfer functions of fuzzy cognitive maps. Operational Research, 2022, 22, 5733-5763.	1.3	8
111	CDM-PAT: a decision support tool for the pre-assessment of CDM projects. International Journal of Computer Applications in Technology, 2005, 22, 80.	0.3	7
112	Forecasting of short-term PV production in energy communities through Machine Learning and Deep Learning algorithms. , 2021, , .		7
113	Leveraging Energy Efficiency Investments: An Innovative Web-based Benchmarking Tool. Advances in Science, Technology and Engineering Systems, 2021, 6, 237-248.	0.4	7
114	Wind repowering: Unveiling a hidden asset. Renewable and Sustainable Energy Reviews, 2022, 162, 112457.	8.2	7
115	Climate and sustainability co-governance in Kenya: A multi-criteria analysis of stakeholders' perceptions and consensus. Energy for Sustainable Development, 2022, 68, 457-471.	2.0	7
116	Foresight of innovative energy technologies through a multi criteria approach. International Journal of Energy Technology and Policy, 2008, 6, 381.	0.1	6
117	Data validation platform for the sophisticated monitoring and communication of the energy technology sector. Renewable Energy, 2010, 35, 931-935.	4.3	6
118	Hydro energy: techno-economic and social aspects within new climate regime. International Journal of Renewable Energy Technology, 2011, 2, 32.	0.2	6
119	An Information Management Software for assessing smart energy systems exploiting cities' multidisciplinary data. , 2014, , .		6
120	Tracking the performance of photovoltaic systems: a tool for minimising the risk of malfunctions and deterioration. IET Renewable Power Generation, 2018, 12, 815-822.	1.7	6
121	Expert views on low-carbon transition strategies for the Dutch solar sector: A delay-based fuzzy cognitive mapping approach. IFAC-PapersOnLine, 2018, 51, 715-720.	0.5	6
122	A multi-criteria decision support framework for assessing seaport sustainability planning: the case of Piraeus. Maritime Policy and Management, 2023, 50, 1030-1056.	1.9	6
123	Integrating a decision support system with smart grid infrastructures and ICT solutions towards energy cost reduction: An action plan to optimally schedule the operation of heating and electricity systems. , 2016, , .		5
124	A modelling framework for the forecasting of energy consumption and CO _{2 emissions at local/regional level. International Journal of Global Energy Issues, 2016, 39, 444.}	0.2	5
125	Cooperation or Localization in European Capacity Markets? A Coalitional Game over Graph Approach. Energies, 2018, 11, 1473.	1.6	5
126	Involve citizens in climate-policy modelling. Nature, 2021, 590, 389-389.	13.7	5

8

#	Article	IF	CITATIONS
127	Towards Sustainable Development and Climate Co-governance: A Multicriteria Stakeholders' Perspective. Multiple Criteria Decision Making, 2021, , 39-74.	0.6	5
128	The potential role of renewable energy in Moldova. Renewable Energy, 2011, 36, 3550-3557.	4.3	4
129	Proposing a Smart City Energy Assessment Framework linking local vision with data sets. , 2014, , .		4
130	Qualification roadmap empowering the Greek building sector workforce in the field of energy. Renewable and Sustainable Energy Reviews, 2016, 65, 992-1004.	8.2	4
131	Distribution transformers failures: How does it cost? Evidence from Greece. Energy Systems, 2016, 7, 601-613.	1.8	4
132	Intelligent Energy Management Within the Smart Cities: An EU-GCC Cooperation Opportunity. , 2019, , 123-147.		4
133	Tools and Mechanisms Fostering EU GCC Cooperation on Energy Efficiency. , 2011, , .		4
134	Participatory multi-criteria decision analysis for sustainable energy planning. International Journal of Multicriteria Decision Making, 2021, 8, 276.	0.1	4
135	OPTIMUS decision support tools: Transforming multidisciplinary data to energy management action plans. , 2016, , .		3
136	Digitizing Energy Savings in Sustainable Smart Cities: Introducing a Virtual Energy-Currency Approach. , 2018, , .		3
137	International Cooperation for Clean Electricity: A UTASTAR Application in Energy Policy. Multiple Criteria Decision Making, 2018, , 163-186.	0.6	3
138	Investments in the EU Power System: A Stress Test Analysis on the Effectiveness of Decarbonisation Policies. , 2019, , 97-122.		3
139	Hedging uncertainty in energy efficiency strategies: a minimax regret analysis. Operational Research, 2020, 20, 2229-2244.	1.3	3
140	How Successful are Energy Efficiency Investments? A Comparative Analysis for Classification & Performance Prediction. Computational Economics, 0, , 1.	1.5	3
141	Review & analysis of oil & gas incidents related to the supply interruptions. , 2009, , .		2
142	Integrating analysts' forecasts in the security screening process: empirical evidence from the Eurostoxx 50. Applied Financial Economics, 2013, 23, 685-699.	0.5	2
143	A web tool for assessing the energy use of buildings in Greece: First results from real life application. , 2015, , .		2
144	A Framework to Assess the Behavior and Performance of a City Towards Energy Optimization. Studies in Computational Intelligence, 2016, , 189-205.	0.7	2

#	Article	IF	CITATIONS
145	EU—GCC Clean Energy Cooperation. , 0, , 288-308.		2
146	Integrating Integrated Assessment Modelling in Support of the Paris Agreement: The I2AM PARIS Platform. , 2021, , .		2
147	EU-GCC Clean Energy Network. International Journal of Energy Sector Management, 2013, 7, .	1.2	2
148	PROMOTING RENEWABLE ENERGIES AND ENERGY EFFICIENCY THROUGH THE CDM FUNDING OPTIONS. , 2007, , .		1
149	An intelligent decision support system for SMEs' activation in the energy sector. International Journal of Management and Decision Making, 2009, 10, 125.	0.1	1
150	Assessing the socioeconomic effects caused by overvoltages to residential blocks: the case of Greece. International Journal of Green Economics, 2013, 7, 320.	0.4	1
151	Policy dialogue on the assessment and convergence of renewable energy policy in EU member states. Energy and Environment, 2016, 27, 5-9.	2.7	1
152	Renewable energy policy dialogue towards 2030 – Editorial of the special issue. Energy and Environment, 2017, 28, 5-10.	2.7	1
153	Editorial of special issue on transdisciplinary science in energy transitions: thinking outside strictly formalized modeling boxes. Energy Sources, Part B: Economics, Planning and Policy, 2020, 15, 453-454.	1.8	1
154	Comparative analysis of Al-based models for short-term photovoltaic power forecasting in energy cooperatives. Intelligent Decision Technologies, 2022, 15, 691-705.	0.6	1
155	A framework for integrating user experience in action plan evaluation through social media: Transforming user generated content into knowledge to optimise energy use in buildings. , 2015, , .		0
156	Setting Technology Transfer Priorities with CDM-SET. , 2010, , 205-222.		0
157	Intelligent Information Systems for Strengthening the Quality of Energy Services in the EU. , 2010, , 423-437.		0
158	EU—GCC Clean Energy Cooperation. , 0, , 221-241.		0
159	An integrated methodological framework to support decisions on problems of the Greek natural gas market. International Journal of Decision Support Systems, 2021, 4, 313.	0.1	0