List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4008591/publications.pdf Version: 2024-02-01

l Et l tut

#	Article	IF	CITATIONS
1	Boride evolutionary behavior and mechanism in the TLP repaired IN738 superalloy with crack-like defects. Journal of Alloys and Compounds, 2022, 909, 164692.	2.8	8
2	Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	63
3	Nacreâ€Inspired, Liquid Metalâ€Based Ultrasensitive Electronic Skin by Spatially Regulated Cracking Strategy. Advanced Functional Materials, 2021, 31, 2102359.	7.8	67
4	Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging. Applied Surface Science, 2021, 554, 149579.	3.1	15
5	Diamond thin films integrated with flexible substrates and their physical, chemical and biological characteristics. Journal Physics D: Applied Physics, 2021, 54, 384004.	1.3	5
6	Thermal stress reduction strategy for high-temperature power electronics with Ag sintering. Microelectronics Reliability, 2021, 127, 114379.	0.9	11
7	Effect of Ag Sintered Bondline Thickness on High-Temperature Reliability of SiC Power Devices. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1889-1895.	1.4	7
8	Atomic Bonding-Engineered Heterogeneous Integration of Semiconductor Nanowires by Femtosecond Laser Irradiation for a Miniaturized Photodetector. Applied Surface Science, 2021, 575, 151709.	3.1	3
9	Femtosecond Laser Irradiation-Mediated MoS ₂ –Metal Contact Engineering for High-Performance Field-Effect Transistors and Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 54246-54257.	4.0	15
10	Maskless Patterning of Metal Outflow in Alternating Metal/Ceramic Multiple Nanolayers by Femtosecond Laser Irradiation. Journal of Physical Chemistry C, 2020, 124, 1178-1189.	1.5	5
11	Exhalingâ€Driven Hydroelectric Nanogenerators for Standâ€Alone Nonmechanical Breath Analyzing. Advanced Materials Technologies, 2020, 5, 1900819.	3.0	27
12	Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139894.	2.6	18
13	Moistureâ€Enabled Electricity Generation: From Physics and Materials to Selfâ€Powered Applications. Advanced Materials, 2020, 32, e2003722.	11.1	175
14	A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsystems and Nanoengineering, 2020, 6, 64.	3.4	57
15	High-Reliability Wireless Packaging for High-Temperature SiC Power Device Sintered by Novel Organic-Free Nanomaterial. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 1953-1959.	1.4	8
16	Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11, 2453.	5.8	394
17	Sintering Mechanism of a Supersaturated Ag–Cu Nanoalloy Film for Power Electronic Packaging. ACS Applied Materials & Interfaces, 2020, 12, 16743-16752	4.0	32
18	Mechanism of ultrasonic-assisted transient liquid phase bonding of 6061 Al alloy with cladded Zn-Al alloy in air. Journal of Materials Processing Technology, 2020, 286, 116823.	3.1	12

#	Article	IF	CITATIONS
19	Stabilizing the sintered nanopore bondline by residual organics for high temperature electronics. Microelectronics Reliability, 2020, 111, 113727.	0.9	8
20	Contact engineering of single core/shell SiC/SiO ₂ nanowire memory unit with high current tolerance using focused femtosecond laser irradiation. Nanoscale, 2020, 12, 5618-5626.	2.8	11
21	Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 7805-7814.	4.0	52
22	A programmable, gradient-composition strategy producing synergistic and ultrahigh sensitivity amplification for flexible pressure sensing. Nano Energy, 2020, 74, 104847.	8.2	25
23	Rationally designed surface microstructural features for enhanced droplet jumping and anti-frosting performance. Soft Matter, 2020, 16, 4462-4476.	1.2	30
24	Low temperature Cu bonding with large tolerance of surface oxidation. AIP Advances, 2019, 9, .	0.6	9
25	Large-Area Die-Attachment Sintered by Organic-Free Ag Sintering Material at Low Temperature. Journal of Electronic Materials, 2019, 48, 7562-7572.	1.0	7
26	Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties. Applied Physics Letters, 2019, 115, .	1.5	16
27	Highly focused femtosecond laser directed selective boron doping in single SiC nanowire device for n-p conversion. Applied Physics Letters, 2019, 115, .	1.5	7
28	Experimental and Theoretical Investigation of Laser Pretreatment on Strengthening the Heterojunction between Carbon Fiber-Reinforced Plastic and Aluminum Alloy. ACS Applied Materials & Interfaces, 2019, 11, 22005-22014.	4.0	63
29	Near-ideal compressive strength of nanoporous silver composed of nanowires. Acta Materialia, 2019, 173, 163-173.	3.8	12
30	Self-Powered, Rapid-Response, and Highly Flexible Humidity Sensors Based on Moisture-Dependent Voltage Generation. ACS Applied Materials & Interfaces, 2019, 11, 14249-14255.	4.0	74
31	Cooperative Bilayer of Lattice-Disordered Nanoparticles as Room-Temperature Sinterable Nanoarchitecture for Device Integrations. ACS Applied Materials & Interfaces, 2019, 11, 16972-16980.	4.0	30
32	SiC chip attachment sintered by nanosilver paste and their shear strength evaluation. Welding in the World, Le Soudage Dans Le Monde, 2019, 63, 1055-1063.	1.3	11
33	A Predictive Model for Thermal Conductivity of Nano-Ag Sintered Interconnect for a SiC Die. Journal of Electronic Materials, 2019, 48, 2811-2825.	1.0	12
34	Failure analysis and reliability evaluation of silver-sintered die attachment for high-temperature applications. Microelectronics Reliability, 2019, 94, 46-55.	0.9	24
35	Plasmon-Induced Heterointerface Thinning for Schottky Barrier Modification of Core/Shell SiC/SiO ₂ Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 9326-9332.	4.0	16
36	Preparation of Oxidation-Resistant Ag-Cu Alloy Nanoparticles by Polyol Method for Electronic Packaging. Journal of Electronic Materials, 2019, 48, 1286-1293.	1.0	16

#	Article	IF	CITATIONS
37	Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. Journal of Alloys and Compounds, 2019, 774, 487-494.	2.8	65
38	Ultrasonic effect mechanism on transient liquid phase bonding joints of SiCp reinforced Mg metal matrix composites using Zn-Al-Zn multi-interlayer. Ultrasonics Sonochemistry, 2018, 43, 101-109.	3.8	11
39	TLP repaired IN738LC superalloy with uneven surface defect gap width after post heat treatment: Microstructure and mechanical properties. Journal of Alloys and Compounds, 2018, 748, 26-35.	2.8	14
40	Selfâ€Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Advanced Materials, 2018, 30, e1705925.	11.1	207
41	Scalable High-Performance Ultraminiature Graphene Micro-Supercapacitors by a Hybrid Technique Combining Direct Writing and Controllable Microdroplet Transfer. ACS Applied Materials & Interfaces, 2018, 10, 5404-5412.	4.0	54
42	Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 16572-16580.	4.0	32
43	Modified pulse laser deposition of Ag nanostructure as intermediate for low temperature Cu-Cu bonding. Applied Surface Science, 2018, 445, 16-23.	3.1	17
44	Ultrasonic-assisted fluxless reactive bonding of Mg/Al dissimilar alloy using Zn–Al solder in air. Science and Technology of Welding and Joining, 2018, 23, 19-27.	1.5	20
45	Thermal-stable void-free interface morphology and bonding mechanism of low-temperature Cu-Cu bonding using Ag nanostructure as intermediate. Journal of Alloys and Compounds, 2018, 767, 575-582.	2.8	25
46	The mechanism of pore segregation in the sintered nano Ag for high temperature power electronics applications. Materials Letters, 2018, 228, 168-171.	1.3	12
47	Microstructure of diffusion-brazing repaired IN738LC superalloy with uneven surface defect gap width. Science and Technology of Welding and Joining, 2017, 22, 617-626.	1.5	10
48	Nanoscale Wire Bonding of Individual Ag Nanowires on Au Substrate at Room Temperature. Nano-Micro Letters, 2017, 9, 26.	14.4	16
49	The Effects of Borides on the Mechanical Properties of TLPB Repaired Inconel 738 Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4622-4631.	1.1	13
50	Improving the electrical contact at a Pt/TiO ₂ nanowire interface by selective application of focused femtosecond laser irradiation. Nanotechnology, 2017, 28, 405302.	1.3	19
51	Ultrasound-Assisted Transient Liquid Phase Bonding of Magnesium Alloy Using Brass Interlayer in Air. Journal of Materials Science and Technology, 2017, 33, 567-572.	5.6	25
52	Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering. Journal of Alloys and Compounds, 2017, 690, 86-94.	2.8	43
53	Sintering Bonding Process with Ag Nanoparticle Paste and Joint Properties in High Temperature Environment. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	25
54	<i>In situ</i> nanojoining of Y- and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology, 2016, 27, 125201.	1.3	40

#	Article	IF	CITATIONS
55	Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units. Applied Physics Letters, 2016, 108, .	1.5	23
56	A comparative study of silver nanoparticles synthesized by arc discharge and femtosecond laser ablation in aqueous solution. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	8
57	Plasmonicâ€Radiationâ€Enhanced Metal Oxide Nanowire Heterojunctions for Controllable Multilevel Memory. Advanced Functional Materials, 2016, 26, 5979-5986.	7.8	59
58	Time-dependent wettability of nano-patterned surfaces fabricated by femtosecond laser with high efficiency. Applied Surface Science, 2016, 389, 554-559.	3.1	36
59	Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 178-184.	2.6	34
60	Microstructure, mechanical properties and mechanism of ultrasound-assisted rapid transient liquid phase bonding of magnesium alloy in air. Materials and Design, 2016, 91, 19-27.	3.3	42
61	Ultrasonic-assisted brazing of Al–Ti dissimilar alloy by a filler metal with a large semi-solid temperature range. Materials and Design, 2016, 95, 296-305.	3.3	40
62	Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting. Applied Surface Science, 2016, 370, 364-372.	3.1	27
63	Nanostructure of immiscible Mg–Fe dissimilar weld without interfacial intermetallic transition layer. Materials and Design, 2016, 92, 445-449.	3.3	22
64	Cold welding of Ag nanowires by large plastic deformation. Scripta Materialia, 2016, 114, 112-116.	2.6	18
65	Joining Mg alloys with Zn interlayer by novel ultrasonic-assisted transient liquid phase bonding method in air. Materials Letters, 2016, 166, 219-222.	1.3	34
66	Investigation of splashing phenomena during the impact of molten sub-micron gold droplets on solid surfaces. Soft Matter, 2016, 12, 295-301.	1.2	13
67	Cu-Cu bonding by Ag nanostructure at low temperature of 180 ŰC. , 2015, , .		5
68	Synthesis with Glucose Reduction Method and Low Temperature Sintering of Ag-Cu Alloy Nanoparticle Pastes for Electronic Packaging. Materials Transactions, 2015, 56, 1252-1256.	0.4	7
69	Interfacial Nano-Mechanical Properties of Copper Joints Bonded with Silver Nanopaste near Room Temperature. Materials Transactions, 2015, 56, 1010-1014.	0.4	2
70	Effects of Package Warpage on Head-in-Pillow Defect. Materials Transactions, 2015, 56, 1037-1042.	0.4	11
71	Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications. ACS Applied Materials & amp; Interfaces, 2015, 7, 12597-12618.	4.0	276
72	Sintering mechanisms and mechanical properties of joints bonded using silver nanoparticles for electronic packaging applications. Welding in the World, Le Soudage Dans Le Monde, 2015, 59, 427-432.	1.3	24

#	Article	IF	CITATIONS
73	Thermal analysis of Cu-organic composite nanoparticles andÂfabrication of highly conductive copper films. Journal of Alloys and Compounds, 2015, 649, 1156-1163.	2.8	13
74	Annealing-induced highly-conductive and stable Cu–organic composite nanoparticles with hierarchical structures. Journal of Alloys and Compounds, 2015, 636, 1-7.	2.8	9
75	Assembly of silver nanoparticles on nanowires into ordered nanostructures with femtosecond laser radiation. Applied Optics, 2015, 54, 2524.	0.9	12
76	Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy. Journal of Applied Physics, 2015, 117, 023109.	1.1	13
77	Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation. Journal of Applied Physics, 2014, 115, .	1.1	8
78	Resistance spot welding of AZ series magnesium alloys: Effects of aluminum content on microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 323-334.	2.6	47
79	Effects of Heat Treatment on Grain-Boundary β-Mg17Al12 and Fracture Properties of Resistance Spot-Welded AZ80 Mg Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3747-3756.	1.1	16
80	Feasibility study of resistance spot welding of dissimilar Al/Mg combinations with Ni based interlayers. Science and Technology of Welding and Joining, 2013, 18, 541-550.	1.5	59
81	Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires. Applied Physics Letters, 2013, 102, .	1.5	60
82	Bonding NiTi to glass with femtosecond laser pulses. Materials Letters, 2013, 98, 142-145.	1.3	10
83	Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds. Materials & Design, 2013, 45, 336-342.	5.1	57
84	Nano Brazing of Pt-Ag Nanoparticles under Femtosecond Laser Irradiation. Nano-Micro Letters, 2013, 5, 88-92.	14.4	11
85	Tensile and fatigue properties of weld-bonded and adhesive-bonded magnesium alloy joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 563, 125-132.	2.6	28
86	Cutting NiTi with Femtosecond Laser. Advances in Materials Science and Engineering, 2013, 2013, 1-4.	1.0	9
87	Selfâ€Oriented Nanojoining of Silver Nanowires via Surface Selective Activation. Particle and Particle Systems Characterization, 2013, 30, 420-426.	1.2	49
88	Metal–Metal Bonding Process Using Cu+Ag Mixed Nanoparticles. Materials Transactions, 2013, 54, 879-883.	0.4	25
89	Mechanism of Low Temperature Sintering-Bonding through <i>In-Situ</i> Formation of Silver Nanoparticles Using Silver Oxide Microparticles. Materials Transactions, 2013, 54, 872-878.	0.4	14
90	Controlled joining of Ag nanoparticles with femtosecond laser radiation. Journal of Applied Physics, 2012, 112, .	1.1	34

#	Article	IF	CITATIONS
91	Microstructure analysis of AZ31 magnesium alloy welds using phase-field models. Acta Materialia, 2012, 60, 5925-5932.	3.8	54
92	Effect of PVP on the low temperature bonding process using polyol prepared Ag nanoparticle paste for electronic packaging application. Journal of Physics: Conference Series, 2012, 379, 012024.	0.3	12
93	Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 537, 11-24.	2.6	68
94	Microstructure Refinement After the Addition of Titanium Particles in AZ31 Magnesium Alloy Resistance Spot Welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 598-609.	1.1	15
95	Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 81-87.	2.6	28
96	Bonding of immiscible Mg and Fe via a nanoscale Fe2Al5 transition layer. Scripta Materialia, 2011, 65, 982-985.	2.6	61
97	Effects of welding parameters and surface pretreatments on resistance spot welding of AZ31B Mg alloy. Metals and Materials International, 2010, 16, 967-974.	1.8	6
98	Resistance-Spot-Welded AZ31 Magnesium Alloys: Part I. Dependence of Fusion Zone Microstructures on Second-Phase Particles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1511-1522.	1.1	46
99	The Mechanisms of Resistance Spot Welding of Magnesium to Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2651-2661.	1.1	77
100	Resistance Spot Welded AZ31 Magnesium Alloys, Part II: Effects of Welding Current on Microstructure and Mechanical Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2642-2650.	1.1	24
101	Resistance spot welding of magnesium alloys. , 2010, , 351-367e.		2
102	Effects of surface conditions on resistance spot welding of Mg alloy AZ31. Science and Technology of Welding and Joining, 2009, 14, 356-361.	1.5	36