
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4008502/publications.pdf Version: 2024-02-01

KENII SATAKE

#	Article	IF	CITATIONS
1	The Great Sumatra-Andaman Earthquake of 26 December 2004. Science, 2005, 308, 1127-1133.	12.6	981
2	Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 815-820.	2.5	460
3	Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 1996, 23, 861-864.	4.0	456
4	Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data. Bulletin of the Seismological Society of America, 2013, 103, 1473-1492.	2.3	436
5	Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature, 2003, 424, 660-663.	27.8	426
6	Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 1996, 379, 246-249.	27.8	395
7	Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sedimentary Geology, 2000, 135, 255-264.	2.1	261
8	Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. Journal of Geophysical Research, 2003, 108, .	3.3	254
9	Tsunami Source of the 2004 Sumatra-Andaman Earthquake Inferred from Tide Gauge and Satellite Data. Bulletin of the Seismological Society of America, 2007, 97, S192-S207.	2.3	237
10	A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 2011, 310, 480-487.	4.4	232
11	Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics, 1995, 144, 455-470.	1.9	218
12	Long-Term Perspectives on Giant Earthquakes and Tsunamis at Subduction Zones. Annual Review of Earth and Planetary Sciences, 2007, 35, 349-374.	11.0	216
13	Fault parameters of the 1896 Sanriku Tsunami Earthquake estimated from Tsunami Numerical Modeling. Geophysical Research Letters, 1996, 23, 1549-1552.	4.0	205
14	Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophysical Research Letters, 2012, 39, .	4.0	202
15	Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones. Pure and Applied Geophysics, 1999, 154, 467-483.	1.9	182
16	The 1964 Prince William Sound earthquake: Joint inversion of tsunami and geodetic data. Journal of Geophysical Research, 1996, 101, 523-532.	3.3	176
17	Mechanism of the 1992 Nicaragua Tsunami Earthquake. Geophysical Research Letters, 1994, 21, 2519-2522.	4.0	161
18	Depth distribution of coseismic slip along the Nankai Trough, Japan, from joint inversion of geodetic and tsunami data. Journal of Geophysical Research, 1993, 98, 4553-4565.	3.3	156

#	Article	IF	CITATIONS
19	Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	154
20	Inversion of tsunami waveforms for the estimation of a fault heterogeneity: Method and numerical experiments Journal of Physics of the Earth, 1987, 35, 241-254.	1.4	147
21	Traveltime delay and initial phase reversal of distant tsunamis coupled with the selfâ€gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 2014, 119, 4287-4310.	3.4	140
22	Transient Uplift After a 17th-Century Earthquake Along the Kuril Subduction Zone. Science, 2004, 306, 1918-1920.	12.6	138
23	Detailed coseismic slip distribution of the 1944 Tonankai Earthquake estimated from tsunami waveforms. Geophysical Research Letters, 2001, 28, 1075-1078.	4.0	137
24	Logic-tree Approach for Probabilistic Tsunami Hazard Analysis and its Applications to the Japanese Coasts. Pure and Applied Geophysics, 2007, 164, 577-592.	1.9	135
25	Inversion of tsunami waveforms for the estimation of heterogeneous fault motion of large submarine earthquakes: The 1968 Tokachiâ€oki and 1983 Japan Sea earthquakes. Journal of Geophysical Research, 1989, 94, 5627-5636.	3.3	130
26	Sediment slump likely caused 1998 Papua New Guinea tsunami. Eos, 1999, 80, 329.	0.1	124
27	Marine incursions of the past 1500 years and evidence of tsunamis at Suijin-numa, a coastal lake facing the Japan Trench. Holocene, 2008, 18, 517-528.	1.7	121
28	Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from oceanâ€wide tsunami waveforms and GPS data. Geophysical Research Letters, 2015, 42, 1053-1060.	4.0	121
29	Scaling relations of seismic moment, rupture area, average slip, and asperity size for <i>M</i> ~9 subductionâ€zone earthquakes. Geophysical Research Letters, 2013, 40, 5070-5074.	4.0	114
30	What controls the lateral variation of large earthquake occurrence along the Japan Trench?. Island Arc, 1997, 6, 261-266.	1.1	112
31	Source model of the 16 September 2015 Illapel, Chile, <i>M_w</i> 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 2016, 43, 643-650.	4.0	111
32	The Cape Mendocino, California, Earthquakes of April 1992: Subduction at the Triple Junction. Science, 1993, 261, 433-438.	12.6	110
33	Estimation of seismic moment and slip distribution of the April 1, 1946, Aleutian tsunami earthquake. Journal of Geophysical Research, 1997, 102, 11765-11774.	3.3	110
34	Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hokkaido, Japan. Journal of Geophysical Research, 2009, 114, .	3.3	110
35	Effects of bathymetry on tsunami propagation: Application of ray tracing to tsunamis. Pure and Applied Geophysics, 1988, 126, 27-36.	1.9	107
36	Reexamination of the A.D. 869 Jogan earthquake size from tsunami deposit distribution, simulated flow depth, and velocity. Geophysical Research Letters, 2014, 41, 2297-2303.	4.0	99

#	Article	IF	CITATIONS
37	Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data. Pure and Applied Geophysics, 2013, 170, 1493-1509.	1.9	94
38	Geological and historical evidence of irregular recurrent earthquakes in Japan. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140375.	3.4	94
39	Tsunami Source of the 2010 Mentawai, Indonesia Earthquake Inferred from Tsunami Field Survey and Waveform Modeling. Pure and Applied Geophysics, 2013, 170, 1567-1582.	1.9	90
40	Rupture process of the 2004 great Sumatra-Andaman earthquake estimated from tsunami waveforms. Earth, Planets and Space, 2006, 58, 203-209.	2.5	89
41	Generation mechanism of tsunamis from the 1883 Krakatau Eruption. Geophysical Research Letters, 1995, 22, 509-512.	4.0	87
42	Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake. Earth, Planets and Space, 2001, 53, 235-241.	2.5	87
43	The 1957 great Aleutian earthquake. Pure and Applied Geophysics, 1994, 142, 3-28.	1.9	85
44	Source of the July 2006 West Java tsunami estimated from tide gauge records. Geophysical Research Letters, 2006, 33, .	4.0	84
45	The 2004 Indian Ocean tsunami: Tsunami source model from satellite altimetry. Earth, Planets and Space, 2006, 58, 195-201.	2.5	76
46	Edge wave and non-trapped modes of the 25 april 1992 Cape Mendocino tsunami. Pure and Applied Geophysics, 1995, 144, 409-426.	1.9	75
47	Tsunami field survey of the 1992 Nicaragua earthquake. Eos, 1993, 74, 145-157.	0.1	74
48	The mechanism of the 1983 Japan Sea earthquake as inferred from long-period surface waves and tsunamis. Physics of the Earth and Planetary Interiors, 1985, 37, 249-260.	1.9	73
49	The 1741 Oshima-Oshima Eruption: Extent and volume of submarine debris avalanche. Geophysical Research Letters, 2001, 28, 427-430.	4.0	73
50	Tsunami Sources of the November 2006 and January 2007 Great Kuril Earthquakes. Bulletin of the Seismological Society of America, 2008, 98, 1559-1571.	2.3	72
51	Slip distribution of the 1952 Tokachi-Oki earthquake (M8.1) along the Kuril Trench deduced from tsunami waveform inversion. Journal of Geophysical Research, 2003, 108, .	3.3	71
52	Total analysis of the 1993 Hokkaido Nansei-Oki Earthquake using seismic wave, tsunami, and geodetic data. Geophysical Research Letters, 1995, 22, 9-12.	4.0	69
53	Source complexity of the 1988 Armenian Earthquake: Evidence for a slow afterâ€slip event. Journal of Geophysical Research, 1993, 98, 15797-15808.	3.3	67
54	Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan. Journal of Geophysical Research, 2010, 115, .	3.3	66

#	Article	IF	CITATIONS
55	Evaluation of tsunami impacts on shallow marine sediments: An example from the tsunami caused by the 2003 Tokachi-oki earthquake, northern Japan. Sedimentary Geology, 2007, 200, 314-327.	2.1	65
56	The great Kurile Earthquake of October 4, 1994 tore the slab. Geophysical Research Letters, 1995, 22, 1661-1664.	4.0	62
57	Tsunami data assimilation of Cascadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 2016, 43, 4189-4196.	4.0	61
58	The July 1998 Papua New Guinea Earthquake: Mechanism and Quantification of Unusual Tsunami Generation. Pure and Applied Geophysics, 2003, 160, 2087-2118.	1.9	59
59	Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami. Geoscience Letters, 2014, 1, .	3.3	59
60	Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquake. Geophysical Journal International, 2014, 199, 752-766.	2.4	59
61	Rupture extent of the 1938 Alaskan earthquake as inferred from tsunami waveforms. Geophysical Research Letters, 1994, 21, 733-736.	4.0	58
62	Fault models of unusual tsunami in the 17th century along the Kuril trench. Earth, Planets and Space, 2008, 60, 925-935.	2.5	58
63	New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data. Pure and Applied Geophysics, 2015, 172, 621-640.	1.9	58
64	The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption. Science Advances, 2020, 6, eaaz1377.	10.3	58
65	Waveform and Spectral Analyses of the 2011 Japan Tsunami Records on Tide Gauge and DART Stations Across the Pacific Ocean. Pure and Applied Geophysics, 2013, 170, 1275-1293.	1.9	57
66	The Sanriku-Oki, Japan, Earthquake of December 28, 1994 (Mw7.7): Rupture of a different asperity from a previous earthquake. Geophysical Research Letters, 1996, 23, 1465-1468.	4.0	56
67	Tide gauge response to tsunamis: Measurements at 40 tide gauge stations in Japan. Journal of Marine Research, 1988, 46, 557-571.	0.3	55
68	Historical tsunami and storm deposits during the last five centuries on the Sanriku coast, Japan. Marine Geology, 2015, 367, 105-117.	2.1	55
69	Tsunami source of the 2004 off the Kii Peninsula earthquakes inferred from offshore tsunami and coastal tide gauges. Earth, Planets and Space, 2005, 57, 173-178.	2.5	54
70	28 Tsunamis. International Geophysics, 2002, 81, 437-451.	0.6	53
71	Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea. Earth, Planets and Space, 2007, 59, 381-390.	2.5	53
72	Source estimate and tsunami forecast from farâ€field deepâ€ocean tsunami waveforms—The 27 February 2010 <i>M_w</i> 8.8 Maule earthquake. Geophysical Research Letters, 2016, 43, 659-665.	4.0	52

#	Article	IF	CITATIONS
73	A fault model for the Niigata, Japan, earthquake of June 16, 1964 Journal of Physics of the Earth, 1983, 31, 217-223.	1.4	51
74	Seventeenth-century uplift in eastern Hokkaido, Japan. Holocene, 2004, 14, 487-501.	1.7	51
75	Tsunami heights and damage along the Myanmar coast from the December 2004 Sumatra-Andaman earthquake. Earth, Planets and Space, 2006, 58, 243-252.	2.5	51
76	History and features of trans-oceanic tsunamis and implications for paleo-tsunami studies. Earth-Science Reviews, 2020, 202, 103112.	9.1	51
77	The potential hazard from tsunami and Seiche waves generated by large earthquakes within Lake Tahoe, California-Nevada. Geophysical Research Letters, 2000, 27, 1203-1206.	4.0	48
78	Change in seismicity beneath the Tokyo metropolitan area due to the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 2011, 63, 731-735.	2.5	48
79	Abnormal tsunamis caused by the June 13, 1984, Torishima, Japan, earthquake. Journal of Geophysical Research, 1991, 96, 19933-19939.	3.3	46
80	Mechanism of the 1975 Kalapana, Hawaii, earthquake inferred from tsunami data. Journal of Geophysical Research, 1999, 104, 13153-13167.	3.3	45
81	Use of tsunami waveforms for earthquake source study. Natural Hazards, 1991, 4, 193-208.	3.4	43
82	Asperity Distribution of the 1952 Great Kamchatka Earthquake and its Relation to Future Earthquake Potential in Kamchatka. Pure and Applied Geophysics, 1999, 154, 541-553.	1.9	43
83	Source parameters of the 1957 Aleutian Earthquake from tsunami waveforms. Geophysical Research Letters, 1993, 20, 1487-1490.	4.0	42
84	A Review of Source Models of the 2015 Illapel, Chile Earthquake and Insights from Tsunami Data. Pure and Applied Geophysics, 2017, 174, 1-9.	1.9	42
85	Broadband study of the 1989 Loma Prieta Earthquake. Geophysical Research Letters, 1990, 17, 1179-1182.	4.0	40
86	Tsunami generation of the 1993 Hokkaido Nansei-Oki earthquake. Pure and Applied Geophysics, 1995, 144, 803-821.	1.9	40
87	Re-examination of the 1940 Shakotan-oki earthquake and the fault parameters of the earthquakes along the eastern margin of the Japan Sea. Physics of the Earth and Planetary Interiors, 1986, 43, 137-147.	1.9	39
88	Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory. Journal of Geophysical Research, 2011, 116, .	3.3	39
89	Excitation of Basin-Wide Modes of the Pacific Ocean Following the March 2011 Tohoku Tsunami. Pure and Applied Geophysics, 2014, 171, 3405-3419.	1.9	39
90	A Combined Earthquake–Landslide Source Model for the Tsunami from the 27 November 1945 <i>M</i> _w Â8.1 Makran Earthquake. Bulletin of the Seismological Society of America, 2017, 107, 1033-1040.	2.3	39

#	Article	IF	CITATIONS
91	Polymorphisms of thymidine kinase gene in herpes simplex virus type 1: Analysis of clinical isolates from herpetic keratitis patients and laboratory strains. , 1998, 56, 151-158.		38
92	Geological evidence of recurrent great Kanto earthquakes at the Miura Peninsula, Japan. Journal of Geophysical Research, 2011, 116, .	3.3	38
93	Green's Functionâ€Based Tsunami Data Assimilation: A Fast Data Assimilation Approach Toward Tsunami Early Warning. Geophysical Research Letters, 2017, 44, 10,282.	4.0	37
94	Source Estimate for the 1960 Chile Earthquake From Joint Inversion of Geodetic and Transoceanic Tsunami Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 2812-2828.	3.4	37
95	Three-dimensional attenuation (Qs) structure beneath the Kanto district, Japan, as inferred from strong motion records. Geophysical Research Letters, 2006, 33, .	4.0	36
96	Modeling the seismic source and tsunami generation of the December 12, 1992 Flores Island, Indonesia, earthquake. Pure and Applied Geophysics, 1995, 144, 537-554.	1.9	35
97	Geologic evidence for two pre-2004 earthquakes during recent centuries near Port Blair, South Andaman Island, India. Geology, 2011, 39, 559-562.	4.4	35
98	The 21 May 2003 Tsunami in the Western Mediterranean Sea: Statistical and Wavelet Analyses. Pure and Applied Geophysics, 2013, 170, 1449-1462.	1.9	35
99	Linear and Nonlinear Computations of the 1992 Nicaragua Earthquake Tsunami. , 1995, , 455-470.		35
100	Correlation between Coulomb stress imparted by the 2011 Tohoku-Oki earthquake and seismicity rate change in Kanto, Japan. Geophysical Journal International, 2015, 201, 112-134.	2.4	34
101	Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 2015, 172, 719-730.	1.9	34
102	Tsunami and its Hazard in the Indian and Pacific Oceans: Introduction. Pure and Applied Geophysics, 2007, 164, 249-259.	1.9	33
103	Tsunami Heights along the Pacific Coast of Northern Honshu Recorded from the 2011 Tohoku and Previous Great Earthquakes. Pure and Applied Geophysics, 2014, 171, 3183-3215.	1.9	33
104	Comparative study of two tsunamigenic earthquakes in the Solomon Islands: 2015 <i>M_w</i> 7.0 normalâ€fault and 2013 Santa Cruz <i>M_w</i> 8.0 megathrust earthquakes. Geophysical Research Letters, 2016, 43, 4340-4349.	t 4. 0	33
105	Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms. Pure and Applied Geophysics, 2017, 174, 2925-2943.	1.9	33
106	Optimum Sea Surface Displacement and Fault Slip Distribution of the 2017 Tehuantepec Earthquake (M) Tj ETQq	0,0,0 rgB 4.0	T /Qverlock
107	Correlation between Coulomb stress changes imparted by large historical strike-slip earthquakes and current seismicity in Japan. Earth. Planets and Space. 2011. 63. 301-314.	2.5	32

108Source properties of the 1998 July 17 Papua New Guinea tsunami based on tide gauge records.
Geophysical Journal International, 2015, 202, 361-369.2.431

#	Article	IF	CITATIONS
109	The tsunami source area of the 2003 Tokachi-oki earthquake estimated from tsunami travel times and its relationship to the 1952 Tokachi-oki earthquake. Earth, Planets and Space, 2004, 56, 367-372.	2.5	30
110	Tsunami from the Mariana Earthquake of April 5, 1990: Its abnormal propagation and implications for tsunami potential from outerâ€rise earthquakes. Geophysical Research Letters, 1992, 19, 301-304.	4.0	29
111	Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 <i>M</i> w7.8 event and its relationship with the April 2012 <i>M</i> w 8.6 event. Geophysical Journal International, 2017, 211, 1601-1612.	2.4	29
112	Preliminary Observations and Impact in Japan of the Tsunami Caused by the Tonga Volcanic Eruption on January 15, 2022. Pure and Applied Geophysics, 2022, 179, 1549-1560.	1.9	29
113	The large normalâ€faulting Mariana Earthquake of April 5, 1990 in uncoupled subduction zone. Geophysical Research Letters, 1992, 19, 297-300.	4.0	28
114	Coseismic and postseismic creep in the Andaman Islands associated with the 2004 Sumatra-Andaman earthquake. Geophysical Research Letters, 2007, 34, .	4.0	28
115	GEOLOGIC EVIDENCE FOR THREE GREAT EARTHQUAKES IN THE PAST 3400 YEARS OFF MYANMAR. Journal of Earthquake and Tsunami, 2008, 02, 259-265.	1.3	28
116	Regional probabilistic tsunami hazard assessment associated with active faults along the eastern margin of the Sea of Japan. Earth, Planets and Space, 2020, 72, .	2.5	28
117	Fault parameters and tsunami excitation of the May 23, 1989, MacQuarie Ridge Earthquake. Geophysical Research Letters, 1990, 17, 997-1000.	4.0	27
118	The origin of the tsunami excited by the 1989 Loma Prieta Earthquake —Faulting or slumping?. Geophysical Research Letters, 1991, 18, 637-640.	4.0	27
119	Re-estimation of tsunami source of the 1952 Tokachi-oki earthquake. Earth, Planets and Space, 2006, 58, 535-542.	2.5	27
120	A Tsunami Warning System Based on Offshore Bottom Pressure Gauges and Data Assimilation for Crete Island in the Eastern Mediterranean Basin. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020293.	3.4	27
121	Fault size and depth extent of the Ecuador earthquake (<i>M_w</i> 7.8) of 16 April 2016 from teleseismic and tsunami data. Geophysical Research Letters, 2017, 44, 2211-2219.	4.0	26
122	Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green's Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan. Pure and Applied Geophysics, 2018, 175, 1371-1385.	1.9	26
123	Three-dimensional attenuation structure beneath North Island, New Zealand. Tectonophysics, 1989, 159, 181-194.	2.2	25
124	Recurrence of postseismic coastal uplift, Kuril subduction zone, Japan. Geophysical Research Letters, 2006, 33, .	4.0	25
125	Improved Phase Corrections for Transoceanic Tsunami Data in Spatial and Temporal Source Estimation: Application to the 2011 Tohoku Earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,155.	3.4	25
126	Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan. Science Advances, 2018, 4, eaao0219.	10.3	25

#	Article	IF	CITATIONS
127	Three-dimensional reconstruction and Tsunami model of the Nuuanu and Wailau giant landslides, Hawaii. Geophysical Monograph Series, 2002, , 333-346.	0.1	24
128	Optimal Design for Placements of Tsunami Observing Systems to Accurately Characterize the Inducing Earthquake. Geophysical Research Letters, 2017, 44, 12,106.	4.0	24
129	Possible Dual Earthquake–Landslide Source of the 13 November 2016 Kaikoura, New Zealand Tsunami. Pure and Applied Geophysics, 2017, 174, 3737-3749.	1.9	24
130	Prediction of ground motion in the Osaka sedimentary basin associated with the hypothetical Nankai earthquake. Journal of Seismology, 2008, 12, 185-195.	1.3	23
131	Source depth dependence of micro-tsunamis recorded with ocean-bottom pressure gauges: the January 28, 2000 Mw 6.8 earthquake off Nemuro Peninsula, Japan. Earth and Planetary Science Letters, 2003, 208, 305-318.	4.4	22
132	Paleoseismology of deep-sea faults based on marine surveys of northern Okushiri ridge in the Japan Sea. Journal of Geophysical Research, 2005, 110, .	3.3	22
133	Loading and Gravitational Effects of the 2004 Indian Ocean Tsunami at Syowa Station, Antarctica. Bulletin of the Seismological Society of America, 2007, 97, S271-S278.	2.3	22
134	Introduction to "Tsunami Science Four Years After the 2004 Indian Ocean Tsunami, Part II: Observation and Data Analysis― Pure and Applied Geophysics, 2009, 166, 1-7.	1.9	22
135	Comparison of seismicity declustering methods using a probabilistic measure of clustering. Journal of Seismology, 2013, 17, 1041-1061.	1.3	22
136	Different depths of near-trench slips of the 1896 Sanriku and 2011 Tohoku earthquakes. Geoscience Letters, 2017, 4, .	3.3	22
137	An Adjoint Sensitivity Method Applied to Time Reverse Imaging of Tsunami Source for the 2009 Samoa Earthquake. Geophysical Research Letters, 2018, 45, 627-636.	4.0	22
138	Introduction to the Special Issue on the 2004 Sumatra-Andaman Earthquake and the Indian Ocean Tsunami. Bulletin of the Seismological Society of America, 2007, 97, S1-S5.	2.3	21
139	Occurrence of 1Âka-old corals on an uplifted reef terrace in west Luzon, Philippines: Implications for a prehistoric extreme wave event in the South China Sea region. Geoscience Letters, 2017, 4, .	3.3	21
140	Real-Time Tsunami Data Assimilation of S-Net Pressure Gauge Records during the 2016 Fukushima Earthquake. Seismological Research Letters, 2021, 92, 2145-2155.	1.9	21
141	Variability Among Tsunami Sources in the 17th–21st Centuries Along the Soutehrn Kuril Trench. , 2005, , 157-170.		20
142	Rupture process of the 2016 Wharton Basin strikeâ€slip faulting earthquake estimated from joint inversion of teleseismic and tsunami waveforms. Geophysical Research Letters, 2017, 44, 4082-4089.	4.0	20
143	Tsunami Data Assimilation of Cabled Ocean Bottom Pressure Records for the 2015 Torishima Volcanic Tsunami Earthquake. Journal of Geophysical Research: Solid Earth, 2019, 124, 10413-10422.	3.4	20
144	Review on Recent Progress in Near-Field Tsunami Forecasting Using Offshore Tsunami Measurements: Source Inversion and Data Assimilation. Pure and Applied Geophysics, 2021, 178, 5109-5128.	1.9	20

#	Article	IF	CITATIONS
145	Tsunami waveform inversion of the 2007 Bengkulu, southern Sumatra, earthquake. Earth, Planets and Space, 2008, 60, 993-998.	2.5	19
146	Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth, Planets and Space, 2010, 62, 427-432.	2.5	19
147	Array Observations of the 2012 Haida Gwaii Tsunami Using Cascadia Initiative Absolute and Differential Seafloor Pressure Gauges. Seismological Research Letters, 2015, 86, 1278-1286.	1.9	19
148	Stratigraphic evidence for earthquakes and tsunamis on the west coast of South Andaman Island, India during the past 1000years. Tectonophysics, 2015, 661, 49-65.	2.2	19
149	Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake. Geophysical Research Letters, 2016, 43, 9819-9828.	4.0	19
150	Pre-computed tsunami inundation database and forecast simulation in Pelabuhan Ratu, Indonesia. Pure and Applied Geophysics, 2017, 174, 3219-3235.	1.9	19
151	Alternative to non-linear model for simulating tsunami inundation in real-time. Geophysical Journal International, 2018, 214, 2002-2013.	2.4	19
152	Tsunami Data Assimilation Without a Dense Observation Network. Geophysical Research Letters, 2019, 46, 2045-2053.	4.0	19
153	Potential deployment of offshore bottom pressure gauges and adoption of data assimilation for tsunami warning system in the western Mediterranean Sea. Geoscience Letters, 2019, 6, .	3.3	19
154	Sudden changes in the amplitudeâ€frequency distribution of longâ€period tremors at Aso volcano, southwest Japan. Geophysical Research Letters, 2015, 42, 10,256.	4.0	18
155	Tsunami Forerunner of the 2011 Tohoku Earthquake Observed in the Sea of Japan. Pure and Applied Geophysics, 2015, 172, 683-697.	1.9	18
156	Contribution from Multiple Fault Ruptures to Tsunami Generation During the 2016 Kaikoura Earthquake. Pure and Applied Geophysics, 2018, 175, 2557-2574.	1.9	18
157	An Optimized Array Configuration of Tsunami Observation Network Off Southern Java, Indonesia. Journal of Geophysical Research: Solid Earth, 2019, 124, 9622-9637.	3.4	18
158	Tsunami Resonance Characterization in Japan Due to Transâ€Pacific Sources: Response on the Bay and Continental Shelf. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017037.	2.6	18
159	Review: Source Models of the 2011 Tohoku Earthquake and Long-Term Forecast of Large Earthquakes. Journal of Disaster Research, 2014, 9, 272-280.	0.7	18
160	Free oscillation of the Japan Sea excited by earthquakes–II. Modal approach and synthetic tsunamis. Geophysical Journal International, 1988, 93, 457-463.	2.4	17
161	Introduction to "Tsunamis in the World Ocean: Past, Present, and Future. Volume II― Pure and Applied Geophysics, 2011, 168, 1913-1917.	1.9	17
162	A deep outerâ€rise reverseâ€fault earthquake immediately triggered a shallow normalâ€fault earthquake: The 7 December 2012 off‣anriku earthquake (<i>M_W</i> 7.3). Geophysical Research Letters, 2013, 40, 4214-4219.	4.0	17

#	Article	IF	CITATIONS
163	The El Salvador and Philippines Tsunamis of August 2012: Insights from Sea Level Data Analysis and Numerical Modeling. Pure and Applied Geophysics, 2014, 171, 3437-3455.	1.9	17
164	Constraining the Dip of Shallow, Shallowly Dipping Thrust Events Using Longâ€Period Love Wave Radiation Patterns: Applications to the 25 October 2010 Mentawai, Indonesia, and 4 May 2018 Hawaii Island Earthquakes. Geophysical Research Letters, 2018, 45, 10,342.	4.0	17
165	Geological evidence of tsunamis in the past 3800†years at a coastal lowland in the Central Fukushima Prefecture, Japan. Marine Geology, 2018, 404, 137-146.	2.1	17
166	Tsunami history over the past 2000 years on the Sanriku coast, Japan, determined using gravel deposits to estimate tsunami inundation behavior. Sedimentary Geology, 2019, 382, 85-102.	2.1	17
167	Developments of Tsunami Observing Systems in Japan. Frontiers in Earth Science, 2020, 8, .	1.8	17
168	Tsunamis. , 2007, , 483-511.		16
169	Introduction to "Historical and Recent Catastrophic Tsunamis in the World: Volume I. The 2011 Tohoku Tsunami― Pure and Applied Geophysics, 2013, 170, 955-961.	1.9	16
170	Data assimilation with dispersive tsunami model: a test for the Nankai Trough. Earth, Planets and Space, 2018, 70, .	2.5	16
171	Simulation of the 2018 Tsunami Due to the Flank Failure of Anak Krakatau Volcano and Implication for Future Observing Systems. Geophysical Research Letters, 2020, 47, e2020GL087334.	4.0	16
172	Free oscillation of the Japan Sea excited by earthquakesI. Observation and wave-theoretical approach. Geophysical Journal International, 1988, 93, 451-456.	2.4	15
173	Logic-tree Approach for Probabilistic Tsunami Hazard Analysis and its Applications to the Japanese Coasts. , 2007, , 577-592.		15
174	Tsunamis. , 2015, , 477-504.		15
175	Improving Forecast Accuracy With Tsunami Data Assimilation: The 2009 Dusky Sound, New Zealand, Tsunami. Journal of Geophysical Research: Solid Earth, 2019, 124, 566-577.	3.4	15
176	Tsunami Generation of the 1993 Hokkaido Nansei-Oki Earthquake. , 1995, , 803-821.		15
177	Unusual rupture process of the Japan Sea earthquake. Eos, 1993, 74, 377.	0.1	14
178	Introduction to ?tsunamis: 1992?94?. Pure and Applied Geophysics, 1995, 144, 373-379.	1.9	14
179	Introduction to "Tsunamis in the World Ocean: Past, Present, and Future. Volume I― Pure and Applied Geophysics, 2011, 168, 963-968.	1.9	14
180	Testing the Coulomb stress triggering hypothesis for three recent megathrust earthquakes. Geoscience Letters, 2017, 4, .	3.3	14

#	Article	IF	CITATIONS
181	Sediment transport modeling of multiple grain sizes for the 2011 Tohoku tsunami on a steep coastal valley of Numanohama, northeast Japan. Marine Geology, 2018, 405, 77-91.	2.1	14
182	Far-field tsunami data assimilation for the 2015 Illapel earthquake. Geophysical Journal International, 2019, 219, 514-521.	2.4	14
183	Moment Tensors of Ringâ€Faulting at Active Volcanoes: Insights Into Vertical LVD Earthquakes at the Sierra Negra Caldera, Galápagos Islands. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021693.	3.4	14
184	Edge Wave and Non-trapped Modes of the 25 April 1992 Cape Mendocino Tsunami. , 1995, , 409-426.		14
185	Asperity Distribution of the 1952 Great Kamchatka Earthquake and its Relation to Future Earthquake Potential in Kamchatka. , 1999, , 541-553.		14
186	Tsunamis Generated by Submarine Landslides. , 2012, , 475-484.		13
187	Introduction to "Historical and Recent Catastrophic Tsunamis in the World: Volume II. Tsunamis from 1755 to 2010― Pure and Applied Geophysics, 2013, 170, 1361-1367.	1.9	13
188	Tsunamis: Seismological and Disaster Prevention Studies Journal of Physics of the Earth, 1995, 43, 259-277.	1.4	12
189	Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones. , 1999, , 467-483.		12
190	Effects of topography on particle composition of 2011 tsunami deposits on the ria-type Sanriku coast, Japan. Quaternary International, 2017, 456, 17-27.	1.5	12
191	A Method of Real-Time Tsunami Detection Using Ensemble Empirical Mode Decomposition. Seismological Research Letters, 2020, 91, 2851-2861.	1.9	12
192	Applying a Deep Learning Algorithm to Tsunami Inundation Database of Megathrust Earthquakes. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019690.	3.4	12
193	Characteristics of two tsunamis generated by successive <i>M</i> _w 7.4 and <i>M</i> _w 8.1 earthquakes in the Kermadec Islands on 4ÂMarchÂ2021. Natural Hazards and Earth System Sciences. 2022. 22. 1073-1082.	3.6	12
194	COMPUTATION OF TSUNAMI WAVEFORMS BY A SUPERPOSITION OF NORMAL MODES. Journal of Physics of the Earth, 1987, 35, 409-414.	1.4	11
195	Fore arc structure and plate boundary earthquake sources along the southwestern Kuril subduction zone. Journal of Geophysical Research, 2008, 113, .	3.3	11
196	Understanding Disaster Risk: The Role of Science and Technology. Journal of Disaster Research, 2018, 13, 1168-1176.	0.7	11
197	Analysis of seismological and tsunami data from the 1993 Guam earthquake. Pure and Applied Geophysics, 1995, 144, 823-837.	1.9	10
198	Interevent times in a new alarm-based earthquake forecasting model. Geophysical Journal International, 2013, 194, 1823-1835.	2.4	10

#	Article	IF	CITATIONS
199	Synthetic analysis of the efficacy of the S-net system in tsunami forecasting. Earth, Planets and Space, 2021, 73, .	2.5	10
200	Effects of Depth of Fault Slip and Continental Shelf Geometry on the Generation of Anomalously Longâ€Period Tsunami by the July 2020 <i>M</i> w 7.8 Shumagin (Alaska) Earthquake. Geophysical Research Letters, 2022, 49, .	4.0	10
201	Effects of uncertainty in fault parameters on deterministic tsunami hazard assessment: examples for active faults along the eastern margin of the Sea of Japan. Earth, Planets and Space, 2022, 74, .	2.5	10
202	Recurrence of recent large earthquakes along the southernmost Kurile-Kamchatka Subduction Zone. Geophysical Monograph Series, 2007, , 145-152.	0.1	9
203	Introduction to "Tsunami Science Four Years After the 2004 Indian Ocean Tsunami, Part I: Modelling and Hazard Assessment― Pure and Applied Geophysics, 2008, 165, 1983-1989.	1.9	9
204	Variable Tsunami Sources and Seismic Gaps in the Southernmost Kuril Trench: A Review. Pure and Applied Geophysics, 2009, 166, 77-96.	1.9	9
205	In situ Measurements of Tide Gauge Response and Corrections of Tsunami Waveforms from the Niigataken Chuetsu-oki Earthquake in 2007. Pure and Applied Geophysics, 2009, 166, 97-116.	1.9	9
206	Adaptive Tsunami Source Inversion Using Optimizations and the Reciprocity Principle. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,749.	3.4	9
207	Analog Seismogram Archives at the Earthquake Research Institute, the University of Tokyo. Seismological Research Letters, 2020, 91, 1384-1393.	1.9	9
208	Double trouble at Tonga. Nature, 2010, 466, 931-932.	27.8	8
209	The 2011 Tohoku, Japan, earthquake and tsunami. , 2014, , 310-321.		8
210	Sea surface network optimization for tsunami forecasting in the near field: application to the 2015 Illapel earthquake. Geophysical Journal International, 2020, 221, 1640-1650.	2.4	8
211	Re-examination of Slip Distribution of the 2004 Sumatra–Andaman Earthquake (Mw 9.2) by the Inversion of Tsunami Data Using Green's Functions Corrected for Compressible Seawater Over the Elastic Earth. Pure and Applied Geophysics, 2021, 178, 4777-4796.	1.9	8
212	Sensitivity of Tsunami Data to the Up-Dip Extent of the July 2021 MwÂ8.2 Alaska Earthquake. Seismological Research Letters, 2022, 93, 1992-2003.	1.9	8
213	Lateral segmentation within the subducting lithosphere: three-dimensional structure beneath the North Island, New Zealand. Tectonophysics, 1987, 139, 223-237.	2.2	7
214	Two 1993 Kamchatka earthquakes. Pure and Applied Geophysics, 1995, 144, 633-647.	1.9	7
215	Response to Comment on "The Great Sumatra-Andaman Earthquake of 26 December 2004". Science, 2005, 310, 1431b-1431b.	12.6	7
216	Tsunamis from the 29 March and 5 May 2015 Papua New Guinea earthquake doublet (<i>M_w</i> 7.5) and tsunamigenic potential of the New Britain trench. Geophysical Research Letters, 2015, 42, 5958-5965.	4.0	7

#	Article	IF	CITATIONS
217	A comparative study of far-field tsunami amplitudes and ocean-wide propagation properties: insight from major trans-Pacific tsunamis of 2010–2015. Geophysical Journal International, 2018, 215, 22-36.	2.4	7
218	Slip distribution of the 2005 Nias earthquake (Mw 8.6) inferred from geodetic and far-field tsunami data. Geophysical Journal International, 2020, 223, 1162-1171.	2.4	7
219	The 1957 Great Aleutian Earthquake. , 1994, , 3-28.		7
220	Detectability of very slow earthquake from tide gauge records. Geophysical Research Letters, 1988, 15, 665-668.	4.0	6
221	Fault parameters and tsunami excitation of the May 13, 1993, Shumagin Islands earthquake. Geophysical Research Letters, 1994, 21, 967-970.	4.0	6
222	Complete Implementation of the Green's Function Based Time Reverse Imaging and Sensitivity Analysis of Reversed Time Tsunami Source Inversion. Geophysical Research Letters, 2017, 44, 9844-9855.	4.0	6
223	Synthesis and Source Characteristics of Tsunamis in the Sea of Japan Based on Normalâ€Mode Method. Journal of Geophysical Research: Solid Earth, 2018, 123, 5760-5773.	3.4	6
224	Phase delay of short-period tsunamis in the density-stratified compressible ocean over the elastic Earth. Geophysical Journal International, 2021, 226, 1975-1985.	2.4	6
225	The origin of the tsunami excited by the 1906 San Francisco earthquake. Bulletin of the Seismological Society of America, 1991, 81, 1396-1397.	2.3	6
226	Japanese Tsunami Records from the January 1700 Earthquake in the Cascadia Subduction Zone. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 1998, 51, 1-17.	0.2	5
227	Tsunami generated by the 2007 Noto Hanto earthquake. Earth, Planets and Space, 2008, 60, 127-132.	2.5	5
228	Reduction effect of tsunami sediment transport by a coastal forest: Numerical simulation of the 2011 Tohoku tsunami on the Sendai Plain, Japan. Sedimentary Geology, 2020, 407, 105740.	2.1	5
229	Tsunami Induced by the Strikeâ€6lip Fault of the 2018 Palu Earthquake (<i>M_w</i> = 7.5), Sulawesi Island, Indonesia. Earth and Space Science, 2021, 8, e2020EA001400.	2.6	5
230	Origin Time of the 1854 Tokai Earthquake Recorded in the Logbook of the Russian Frigate <i>Diana</i> . Journal of Disaster Research, 2022, 17, 409-419.	0.7	5
231	Reexamination of tsunami source models for the twentieth century earthquakes off Hokkaido and Tohoku along the eastern margin of the Sea of Japan. Earth, Planets and Space, 2022, 74, .	2.5	5
232	Seismotectonics of the April 25, 1992, Petrolia earthquake and the Mendocino triple junction region. Tectonics, 1995, 14, 1095-1103.	2.8	4
233	A Focal Mechanism Solution Catalog of Earthquakes (M>=2.0) in and around the Japanese Islands for 1985-1998. Bulletin of the Seismological Society of America, 2014, 104, 1031-1036.	2.3	4
234	A Database of Digitized and Analog Seismograms of Historical Earthquakes in Japan. Seismological Research Letters, 2020, 91, 1459-1468.	1.9	4

#	Article	IF	CITATIONS
235	A Review of Source Models of the 2015 Illapel, Chile Earthquake and Insights from Tsunami Data. , 2017, , 1-9.		4
236	Role Played by Science and Technology in Disaster Risk Reduction: From Framework Planning to Implementation. Journal of Disaster Research, 2018, 13, 1222-1232.	0.7	4
237	Introduction to "Tsunami Science Four Years After the 2004 Indian Ocean Tsunami, Part II: Observation and Data Analysis― , 2009, , 1-7.		4
238	THE 2004 SUMATRA—ANDAMAN EARTHQUAKE AND TSUNAMI IN THE INDIAN OCEAN. , 0, , 1-10.		4
239	Study of recent tsunamis sheds light on earthquakes. Eos, 1994, 75, 3.	0.1	3
240	Myanmar Coastal Area Field Survey after the December 2004 Indian Ocean Tsunami. Earthquake Spectra, 2006, 22, 285-294.	3.1	3
241	Observation and Modeling of the January 2009 West Papua, Indonesia Tsunami. Pure and Applied Geophysics, 2011, 168, 1089-1100.	1.9	3
242	Toward Homogeneous Estimation of Long-Term Seismicity from Historical Materials: Number of Felt Earthquakes in Tokyo since 1668. Seismological Research Letters, 2020, 91, 2601-2610.	1.9	3
243	A Multi-fault Model Estimation from Tsunami Data: An Application to the 2018 M7.9 Kodiak Earthquake. Pure and Applied Geophysics, 2020, 177, 1335-1346.	1.9	3
244	Tsunami Duration on the South Coast of Shikoku from Large Earthquakes along the Nankai Trough. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2009, 65, 281-285.	0.4	2
245	Field Survey for Tsunami Trace Height along the Coasts of the Kanto and Tokai districts from the 2010 Chile Earthquake. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2010, 66, 1351-1355.	0.4	2
246	Tsunami Analysis Method with High-Fidelity Crustal Structure and Geometry Model. Journal of Earthquake and Tsunami, 2017, 11, 1750018.	1.3	2
247	Inverse and Forward Modeling of the 1993 Hokkaido Tsunami. Advances in Natural and Technological Hazards Research, 1997, , 99-113.	1.1	2
248	Special Issue on Multi-disciplinary Hazard Reduction from Earthquakes and Volcanoes in Indonesia. Journal of Disaster Research, 2012, 7, 3-3.	0.7	2
249	Research for Contributing to the Field of Disaster Science: A Review. Journal of Disaster Research, 2020, 15, 152-164.	0.7	2
250	The July 1998 Papua New Guinea Earthquake: Mechanism and Quantification of Unusual Tsunami Generation. , 2003, , 2087-2118.		2
251	Multi-Disciplinary Hazard Reduction from Earthquakes and Volcanoes in Indonesia. Journal of Disaster Research, 2012, 7, 4-11.	0.7	2
252	Source Parameters of the 1957 Aleutian and 1938 Alaskan Earthquakes from Tsunami Waveforms. Advances in Natural and Technological Hazards Research, 1995, , 71-84.	1.1	2

#	Article	IF	CITATIONS
253	Advances in Geosciences. , 2012, , .		1
254	The 2011 Great East Japan Earthquake Disaster. International Perspectives in Geography, 2014, , 119-133.	0.2	1
255	Analysis of Seismological and Tsunami Data from the 1993 Guam Earthquake. , 1995, , 823-837.		1
256	Asperity Distribution of Alaskan-Aleutian Earthquakes: Implications for Seismic and Tsunami Hazards. Advances in Natural and Technological Hazards Research, 1997, , 67-81.	1.1	1
257	Tsunami and its Hazard in the Indian and Pacific Oceans: Introduction. , 2007, , 249-259.		1
258	Field Survey of the 2003 Tokachi-Oki Earthquake Tsunami and Simulation at the Ootsu Harbor Located at the Pacific Coast of Hokkaido, Japan. , 2005, , 135-156.		1
259	Sea level and gravity variations after the 2004 Sumatra Earthquake observed at Syowa Station, Antarctica. , 2007, , 536-540.		1
260	Introduction to thematic collection "Historical and geological studies of earthquakes― Geoscience Letters, 2017, 4, .	3.3	0
261	Tsunamis, Inverse Problem of. , 2022, , 71-89.		0
262	In situ Measurements of Tide Gauge Response and Corrections of Tsunami Waveforms from the Niigataken Chuetsu-oki Earthquake in 2007. , 2009, , 97-116.		0
263	Variable Tsunami Sources and Seismic Gaps in the Southernmost Kuril Trench: A Review. , 2009, , 77-96.		0
264	Tsunamis, Inverse Problem of. , 2011, , 1022-1034.		0
265	Advances in Geosciences. , 2012, , .		0
266	Advances in Geosciences. , 2012, , .		0
267	Advances in Geosciences. , 2012, , .		0
268	Tohoku, Japan (2011 Earthquake and Tsunami). Encyclopedia of Earth Sciences Series, 2013, , 1015-1018.	0.1	0
269	Use of Tsunami Waveforms for Earthquake Source Study. , 1991, , 193-208.		0
270	Modeling the Seismic Source and Tsunami Generation of the December 12, 1992 Flores Island, Indonesia, Earthquake. , 1995, , 537-554.		0

16

#	Article	IF	CITATIONS
271	Two 1993 Kamchatka Earthquakes. , 1995, , 633-647.		0
272	Tsunamis, Inverse Problem of. , 2015, , 1-20.		0
273	Special Issue on Global Forum on Science and Technology for Disaster Resilience 2017. Journal of Disaster Research, 2018, 13, 1167-1167.	0.7	Ο
274	Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green's Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan. Pageoph Topical Volumes, 2019, , 141-155.	0.2	0
275	Tsunamis, Inverse Problem of. , 2019, , 1-19.		0
276	Earthquake Disasters and Government Committees. Advances in Geological Science, 2020, , 119-131.	0.1	0
277	Tsunami Science and Disaster Prevention. Advances in Geological Science, 2020, , 133-144.	0.1	0
278	AN ANALYSIS OF SEA LEVEL AND GRAVITY VARIATIONS AFTER THE 2004 SUMATRA EARTHQUAKE OBSERVED AT SYOWA STATION, ANTARCTICA. , 0, , 11-16.		0