
Walther Mothes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4008222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sec6l-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 1996, 384, 432-438.	13.7	1,054
2	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	13.7	702
3	TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature, 2011, 472, 361-365.	13.7	569
4	Semen-Derived Amyloid Fibrils Drastically Enhance HIV Infection. Cell, 2007, 131, 1059-1071.	13.5	510
5	Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms. Nature Methods, 2013, 10, 653-658.	9.0	475
6	Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science, 2014, 346, 759-763.	6.0	439
7	Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nature Cell Biology, 2007, 9, 310-315.	4.6	390
8	Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. Journal of Cell Biology, 2005, 170, 317-325.	2.3	365
9	Visualization of Retroviral Replication in Living Cells Reveals Budding into Multivesicular Bodies. Traffic, 2003, 4, 785-801.	1.3	362
10	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	3.6	333
11	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	6.0	310
12	Signal Sequence Recognition in Posttranslational Protein Transport across the Yeast ER Membrane. Cell, 1998, 94, 795-807.	13.5	307
13	Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7883-7888.	3.3	303
14	Protein Translocation: Tunnel Vision. Cell, 1998, 92, 381-390.	13.5	297
15	Virus Cell-to-Cell Transmission. Journal of Virology, 2010, 84, 8360-8368.	1.5	296
16	Retroviral Entry Mediated by Receptor Priming and Low pH Triggering of an Envelope Glycoprotein. Cell, 2000, 103, 679-689.	13.5	260
17	The Sec61p Complex Mediates the Integration of a Membrane Protein by Allowing Lipid Partitioning of the Transmembrane Domain. Cell, 2000, 102, 233-244.	13.5	244
18	Retroviruses Human Immunodeficiency Virus and Murine Leukemia Virus Are Enriched in Phosphoinositides. Journal of Virology, 2008, 82, 11228-11238.	1.5	243

#	Article	IF	CITATIONS
19	Human TRIM Gene Expression in Response to Interferons. PLoS ONE, 2009, 4, e4894.	1.1	223
20	TRIM E3 Ligases Interfere with Early and Late Stages of the Retroviral Life Cycle. PLoS Pathogens, 2008, 4, e16.	2.1	202
21	Cytonemes and tunneling nanotubules in cell–cell communication and viral pathogenesis. Trends in Cell Biology, 2008, 18, 414-420.	3.6	201
22	TRIM Protein-Mediated Regulation of Inflammatory and Innate Immune Signaling and Its Association with Antiretroviral Activity. Journal of Virology, 2013, 87, 257-272.	1.5	189
23	Molecular Mechanism of Membrane Protein Integration into the Endoplasmic Reticulum. Cell, 1997, 89, 523-533.	13.5	185
24	Cell-to-cell transmission of viruses. Current Opinion in Virology, 2013, 3, 44-50.	2.6	185
25	A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and TÂcell responses. Cell Host and Microbe, 2021, 29, 1137-1150.e6.	5.1	173
26	The Cationic Properties of SEVI Underlie Its Ability To Enhance Human Immunodeficiency Virus Infection. Journal of Virology, 2009, 83, 73-80.	1.5	163
27	Associating HIV-1 envelope glycoprotein structures with states on theÂvirus observed by smFRET. Nature, 2019, 568, 415-419.	13.7	156
28	Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection. Science, 2015, 350, 563-567.	6.0	155
29	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	6.6	155
30	Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell Host and Microbe, 2020, 28, 880-891.e8.	5.1	153
31	Cell-to-Cell Transmission Can Overcome Multiple Donor and Target Cell Barriers Imposed on Cell-Free HIV. PLoS ONE, 2013, 8, e53138.	1.1	140
32	Ca2+ and synaptotagmin VII–dependent delivery of lysosomal membrane to nascent phagosomes. Journal of Cell Biology, 2006, 174, 997-1007.	2.3	137
33	Release of gp120 Restraints Leads to an Entry-Competent Intermediate State of the HIV-1 Envelope Glycoproteins. MBio, 2016, 7, .	1.8	131
34	HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations. ELife, 2018, 7, .	2.8	127
35	Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Reports, 2022, 38, 110210.	2.9	96
36	Imaging individual retroviral fusion events: From hemifusion to pore formation and growth. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8728-8733.	3.3	94

#	Article	IF	CITATIONS
37	An Asymmetric Opening of HIV-1 Envelope Mediates Antibody-Dependent Cellular Cytotoxicity. Cell Host and Microbe, 2019, 25, 578-587.e5.	5.1	93
38	HIV cell-to-cell transmission: effects on pathogenesis and antiretroviral therapy. Trends in Microbiology, 2015, 23, 289-295.	3.5	89
39	The β20–β21 of gp120 is a regulatory switch for HIV-1 Env conformational transitions. Nature Communications, 2017, 8, 1049.	5.8	88
40	TRIM22 Inhibits HIV-1 Transcription Independently of Its E3 Ubiquitin Ligase Activity, Tat, and NF-κB-Responsive Long Terminal Repeat Elements. Journal of Virology, 2011, 85, 5183-5196.	1.5	87
41	Highly Active Antiretroviral Therapies Are Effective against HIV-1 Cell-to-Cell Transmission. PLoS Pathogens, 2014, 10, e1003982.	2.1	86
42	Assembly of the Murine Leukemia Virus Is Directed towards Sites of Cell–Cell Contact. PLoS Biology, 2009, 7, e1000163.	2.6	85
43	A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Reports, 2022, 38, 110368.	2.9	82
44	Structure and Dynamics of the Native HIV-1 Env Trimer. Journal of Virology, 2015, 89, 5752-5755.	1.5	77
45	Signal Sequence Recognition in Cotranslational Translocation by Protein Components of the Endoplasmic Reticulum Membrane. Journal of Cell Biology, 1998, 142, 355-364.	2.3	66
46	In vivo imaging of virological synapses. Nature Communications, 2012, 3, 1320.	5.8	64
47	HIV-1-Infected CD4+ T Cells Facilitate Latent Infection of Resting CD4+ T Cells through Cell-Cell Contact. Cell Reports, 2018, 24, 2088-2100.	2.9	59
48	Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nature Structural and Molecular Biology, 2020, 27, 726-734.	3.6	55
49	The Mature Avian Leukosis Virus Subgroup A Envelope Glycoprotein Is Metastable, and Refolding Induced by the Synergistic Effects of Receptor Binding and Low pH Is Coupled to Infection. Journal of Virology, 2004, 78, 1403-1410.	1.5	53
50	SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. MBio, 2022, 13, e0322721.	1.8	48
51	A Conformational Transition Observed in Single HIV-1 Gag Molecules during <i>In Vitro</i> Assembly of Virus-Like Particles. Journal of Virology, 2014, 88, 3577-3585.	1.5	46
52	TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling. Journal of Virology, 2016, 90, 308-316.	1.5	44
53	NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise. Cell Reports, 2018, 22, 585-599.	2.9	43
54	Disruption of the HIV-1 Envelope allosteric network blocks CD4-induced rearrangements. Nature Communications, 2020, 11, 520.	5.8	42

#	Article	IF	CITATIONS
55	Impact of temperature on the affinity of SARS-CoV-2 Spike glycoprotein for host ACE2. Journal of Biological Chemistry, 2021, 297, 101151.	1.6	42
56	Attachment of Cell-Binding Ligands to Arginine-Rich Cell-Penetrating Peptides Enables Cytosolic Translocation of Complexed siRNA. Chemistry and Biology, 2015, 22, 50-62.	6.2	38
57	HIV-1 Matrix Dependent Membrane Targeting Is Regulated by Gag mRNA Trafficking. PLoS ONE, 2009, 4, e6551.	1.1	36
58	Directional Spread of Surface-Associated Retroviruses Regulated by Differential Virus-Cell Interactions. Journal of Virology, 2010, 84, 3248-3258.	1.5	36
59	Antibody-Induced Internalization of HIV-1 Env Proteins Limits Surface Expression of the Closed Conformation of Env. Journal of Virology, 2019, 93, .	1.5	32
60	TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. Journal of Cell Science, 2014, 127, 3928-42.	1.2	31
61	Native structure of a retroviral envelope protein and its conformational change upon interaction with the target cell. Journal of Structural Biology, 2017, 197, 172-180.	1.3	29
62	Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2020, 94, .	1.5	27
63	Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. Science Advances, 2022, 8, .	4.7	27
64	A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus. Cell Host and Microbe, 2019, 25, 87-100.e10.	5.1	26
65	Shedding-Resistant HIV-1 Envelope Glycoproteins Adopt Downstream Conformations That Remain Responsive to Conformation-Preferring Ligands. Journal of Virology, 2020, 94, .	1.5	21
66	Viral Determinants of Polarized Assembly for the Murine Leukemia Virus. Journal of Virology, 2011, 85, 7672-7682.	1.5	20
67	Viruses exploit the tissue physiology of the host to spread in vivo. Current Opinion in Cell Biology, 2016, 41, 81-90.	2.6	20
68	Longitudinal bioluminescent imaging of HIV-1 infection during antiretroviral therapy and treatment interruption in humanized mice. PLoS Pathogens, 2019, 15, e1008161.	2.1	19
69	Viral entry: a detour through multivesicular bodies. Nature Cell Biology, 2005, 7, 641-642.	4.6	16
70	HIV Entry Revisited. Cell, 2009, 137, 402-404.	13.5	15
71	Basic Residues in the Matrix Domain and Multimerization Target Murine Leukemia Virus Gag to the Virological Synapse. Journal of Virology, 2013, 87, 7113-7126.	1.5	15
72	Murine Leukemia Virus Gag Localizes to the Uropod of Migrating Primary Lymphocytes. Journal of Virology, 2014, 88, 10541-10555.	1.5	13

#	Article	IF	CITATIONS
73	Functional Characterization of the Putative Hepatitis B Virus Core Protein Late Domain Using Retrovirus Chimeras. PLoS ONE, 2013, 8, e72845.	1.1	11
74	Illuminating the virus life cycle with single-molecule FRET imaging. Advances in Virus Research, 2019, 105, 239-273.	0.9	11
75	Surface Transmission or Polarized Egress? Lessons Learned from HTLV Cell-to-Cell Transmission. Viruses, 2010, 2, 601-605.	1.5	10
76	In Vivo Imaging-Driven Approaches to Study Virus Dissemination and Pathogenesis. Annual Review of Virology, 2019, 6, 501-524.	3.0	10
77	Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. Journal of Biological Chemistry, 2022, 298, 101819.	1.6	9
78	VE607 stabilizes SARS-CoV-2 Spike in the "RBD-up―conformation and inhibits viral entry. IScience, 2022, 25, 104528.	1.9	8
79	Murine Leukemia Virus Exploits Innate Sensing by Toll-Like Receptor 7 in B-1 Cells To Establish Infection and Locally Spread in Mice. Journal of Virology, 2019, 93, .	1.5	7
80	SV40 Polyomavirus Activates the Ras-MAPK Signaling Pathway for Vacuolization, Cell Death, and Virus Release. Viruses, 2020, 12, 1128.	1.5	7
81	In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. ELife, 2021, 10, .	2.8	7
82	Mutation of the Putative Immunosuppressive Domain of the Retroviral Envelope Glycoprotein Compromises Infectivity. Journal of Virology, 2017, 91, .	1.5	6
83	Murine Leukemia Virus Spreading in Mice Impaired in the Biogenesis of Secretory Lysosomes and Ca2+-Regulated Exocytosis. PLoS ONE, 2008, 3, e2713.	1.1	6
84	The HIV-1 Env Trimer in HD. Structure, 2014, 22, 935-936.	1.6	4
85	Cancer Microbiology. Journal of the National Cancer Institute, 2022, 114, 651-663.	3.0	4
86	Live Imaging of SARS-CoV-2 Infection in Mice Reveals Neutralizing Antibodies Require Fc Function for Optimal Efficacy. SSRN Electronic Journal, 0, , .	0.4	3
87	Cell-to-Cell Transmission of HIV. , 2013, , 167-184.		1
88	TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. Development (Cambridge), 2014, 141, e1906-e1906.	1.2	0