
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4007609/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Tree Effects on Coffee Leaf Rust at Field and Landscape Scales. Plant Disease, 2023, 107, 247-261.                                                                                                                                                         | 1.4 | 6         |
| 2  | A tropical lady beetle, Diomus lupusapudoves (Coleoptera: Coccinellidae), deceives potential enemies<br>to predate an ant-protected coffee pest through putative chemical mimicry. International Journal of<br>Tropical Insect Science, 2022, 42, 947-953. | 1.0 | 2         |
| 3  | Reduced rainfall and resistant varieties mediate a critical transition in the coffee rust disease.<br>Scientific Reports, 2022, 12, 1564.                                                                                                                  | 3.3 | 2         |
| 4  | Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.                                                                                                                              | 7.3 | 24        |
| 5  | ForestGEO: Understanding forest diversity and dynamics through a global observatory network.<br>Biological Conservation, 2021, 253, 108907.                                                                                                                | 4.1 | 122       |
| 6  | Ecological complexity and contingency: Ants and lizards affect biological control of the coffee leaf miner in Puerto Rico. Agriculture, Ecosystems and Environment, 2021, 305, 107104.                                                                     | 5.3 | 14        |
| 7  | Emergent spatial structure and pathogen epidemics: the influence of management and stochasticity in agroecosystems. Ecological Complexity, 2021, 45, 100872.                                                                                               | 2.9 | 6         |
| 8  | Viewing communities as coupled oscillators: elementary forms from Lotka and Volterra to Kuramoto.<br>Theoretical Ecology, 2021, 14, 247-254.                                                                                                               | 1.0 | 5         |
| 9  | New forms of structure in ecosystems revealed with the Kuramoto model. Royal Society Open Science, 2021, 8, 210122.                                                                                                                                        | 2.4 | 9         |
| 10 | The meta-Allee effect: A generalization from intermittent metapopulations. Ecological Complexity, 2021, 46, 100912.                                                                                                                                        | 2.9 | 2         |
| 11 | Ant's choice: The effect of nutrients on a key ant–hemipteran mutualism. Arthropod-Plant<br>Interactions, 2021, 15, 545.                                                                                                                                   | 1.1 | 2         |
| 12 | Stageâ€structured ontogeny in resource populations generates nonâ€additive stabilizing and deâ€stabilizing forces in populations and communities. Oikos, 2021, 130, 1116.                                                                                  | 2.7 | 3         |
| 13 | Coffee plantations, hurricanes and avian resiliency: insights from occupancy, and local colonization and extinction rates in Puerto Rico. Global Ecology and Conservation, 2021, 27, e01579.                                                               | 2.1 | 4         |
| 14 | Changes in partner traits drive variation in plant–nectar robber interactions across habitats. Basic<br>and Applied Ecology, 2021, 53, 1-11.                                                                                                               | 2.7 | 4         |
| 15 | Differential effects of ants as biological control of the coffee berry borer in Puerto Rico. Biological<br>Control, 2021, 160, 104666.                                                                                                                     | 3.0 | 11        |
| 16 | Can Conflicting Selection from Pollinators and Nectar-Robbing Antagonists Drive Adaptive Pollen<br>Limitation? A Conceptual Model and Empirical Test. American Naturalist, 2021, 198, 576-589.                                                             | 2.1 | 0         |
| 17 | High-order interactions maintain or enhance structural robustness of a coffee agroecosystem network. Ecological Complexity, 2021, 47, 100951.                                                                                                              | 2.9 | 7         |
| 18 | Weak chaos, Allee points, and intermittency emerging from niche construction in population models.<br>Theoretical Ecology, 2020, 13, 177-182.                                                                                                              | 1.0 | 1         |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tree Management and Balancing Process Among Panamanian Farmers. Small-Scale Forestry, 2020, 19, 541-563.                                                                                                                                    | 1.7 | 6         |
| 20 | The assembly and importance of a novel ecosystem: The ant community of coffee farms in Puerto Rico.<br>Ecology and Evolution, 2020, 10, 12650-12662.                                                                                        | 1.9 | 10        |
| 21 | Trophicâ€specific responses to migration in empirical metacommunities. Oikos, 2020, 129, 413-419.                                                                                                                                           | 2.7 | 1         |
| 22 | Confronting Complexity in Agroecology: Simple Models From Turing to Simon. Frontiers in Sustainable Food Systems, 2020, 4, .                                                                                                                | 3.9 | 6         |
| 23 | Insights from excrement: invasive gastropods shift diet to consume the coffee leaf rust and its mycoparasite. Ecology, 2020, 101, e02966.                                                                                                   | 3.2 | 10        |
| 24 | Antagonism between Anolis spp. and Wasmannia auropunctata in coffee farms on Puerto Rico:<br>Potential complications of biological control of the coffee berry borer. Caribbean Journal of<br>Science, 2020, 50, 43.                        | 0.3 | 5         |
| 25 | Endogenous spatial pattern formation from two intersecting ecological mechanisms: the dynamic coexistence of two noxious invasive ant species in Puerto Rico. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202214. | 2.6 | 7         |
| 26 | Syndromes of production and tree-cover dynamics of Neotropical grazing land. Agroecology and Sustainable Food Systems, 2019, 43, 362-385.                                                                                                   | 1.9 | 6         |
| 27 | Hysteresis and critical transitions in a coffee agroecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15074-15079.                                                                     | 7.1 | 20        |
| 28 | Coffee Landscapes Shaping the Anthropocene. Current Anthropology, 2019, 60, S236-S250.                                                                                                                                                      | 1.6 | 38        |
| 29 | Response of Coffee Farms to Hurricane Maria: Resistance and Resilience from an Extreme Climatic<br>Event. Scientific Reports, 2019, 9, 15668.                                                                                               | 3.3 | 21        |
| 30 | The Community Ecology of Herbivore Regulation in an Agroecosystem: Lessons from Complex Systems.<br>BioScience, 2019, 69, 974-996.                                                                                                          | 4.9 | 29        |
| 31 | Multiple hysteretic patterns from elementary population models. Theoretical Ecology, 2018, 11, 433-439.                                                                                                                                     | 1.0 | 6         |
| 32 | Species complementarity in two myrmecophilous lady beetle species in a coffee agroecosystem:<br>implications for biological control. BioControl, 2018, 63, 253-264.                                                                         | 2.0 | 4         |
| 33 | Ecological complexity in the Rosennean framework. Ecological Complexity, 2018, 35, 45-50.                                                                                                                                                   | 2.9 | 7         |
| 34 | The dynamics of the coffee rust disease: an epidemiological approach using network theory. European<br>Journal of Plant Pathology, 2018, 150, 1001-1010.                                                                                    | 1.7 | 20        |
| 35 | Stabilizing intransitive loops: selfâ€organized spatial structure and disjoint time frames in the coffee<br>agroecosystem. Ecosphere, 2018, 9, e02489.                                                                                      | 2.2 | 8         |
| 36 | Scale and strength of oak–mesophyte interactions in a transitional oak–hickory forest. Canadian<br>Journal of Forest Research, 2018, 48, 1366-1372.                                                                                         | 1.7 | 10        |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Huffaker revisited: spatial heterogeneity and the coupling of ineffective agents in biological control.<br>Ecosphere, 2018, 9, e02299.                                                        | 2.2  | 5         |
| 38 | Colony Development and Reproductive Success of Bumblebees in an Urban Gradient. Sustainability, 2018, 10, 1936.                                                                               | 3.2  | 9         |
| 39 | Anolis lizards as biocontrol agents in mainland and island agroecosystems. Ecology and Evolution, 2017, 7, 2193-2203.                                                                         | 1.9  | 15        |
| 40 | Ecological complexity and agroecosystems: seven themes from theory. Agroecology and Sustainable Food Systems, 2017, 41, 697-722.                                                              | 1.9  | 13        |
| 41 | Reduction of species coexistence through mixing in a spatial competition model. Theoretical Ecology, 2017, 10, 443-450.                                                                       | 1.0  | 6         |
| 42 | Ecological resilience in the face of catastrophic damage: The case of Hurricane Maria in Puerto Rico.<br>Natural Resource Modelling, 2017, 30, e12149.                                        | 2.0  | 2         |
| 43 | Emissions from cattle farming in Brazil. Nature Climate Change, 2016, 6, 893-894.                                                                                                             | 18.8 | 4         |
| 44 | Azteca chess: Gamifying a complex ecological process of autonomous pest control in shade coffee.<br>Agriculture, Ecosystems and Environment, 2016, 232, 190-198.                              | 5.3  | 11        |
| 45 | Ecological Networks over the Edge: Hypergraph Trait-Mediated Indirect Interaction (TMII) Structure.<br>Trends in Ecology and Evolution, 2016, 31, 344-354.                                    | 8.7  | 54        |
| 46 | Identification of Putative Coffee Rust Mycoparasites via Single-Molecule DNA Sequencing of Infected Pustules. Applied and Environmental Microbiology, 2016, 82, 631-639.                      | 3.1  | 54        |
| 47 | Impact of Regionally Distinct Agroecosystem Communities on the Potential for Autonomous Control of the Coffee Leaf Rust. Environmental Entomology, 2016, 45, 1521-1526.                       | 1.4  | 12        |
| 48 | The Big Rust and the Red Queen: Long-Term Perspectives on Coffee Rust Research. Phytopathology, 2015, 105, 1164-1173.                                                                         | 2.2  | 104       |
| 49 | Structural constraints on novel ecosystems in agriculture: The rapid emergence of stereotypic modules. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 522-530.           | 2.7  | 13        |
| 50 | A Keystone Ant Species Provides Robust Biological Control of the Coffee Berry Borer Under Varying<br>Pest Densities. PLoS ONE, 2015, 10, e0142850.                                            | 2.5  | 45        |
| 51 | Potential for and consequences of naturalized Bt products: Qualitative dynamics from indirect intransitivities. Ecological Modelling, 2015, 299, 121-129.                                     | 2.5  | 0         |
| 52 | Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8013-8018. | 7.1  | 272       |
| 53 | Parasitoid wasps benefit from shade tree size and landscape complexity in Mexican coffee agroecosystems. Agriculture, Ecosystems and Environment, 2015, 206, 21-32.                           | 5.3  | 24        |
| 54 | Population Responses to Environmental Change in a Tropical Ant: The Interaction of Spatial and Temporal Dynamics. PLoS ONE, 2014, 9, e97809.                                                  | 2.5  | 8         |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Complex Ecological Interactions in the Coffee Agroecosystem. Annual Review of Ecology, Evolution, and Systematics, 2014, 45, 137-158.                                                                                                                      | 8.3  | 89        |
| 56 | Stageâ€dependent responses to emergent habitat heterogeneity: consequences for a predatory insect population in a coffee agroecosystem. Ecology and Evolution, 2014, 4, 3201-3209.                                                                         | 1.9  | 5         |
| 57 | Qualitative Dynamics of the Coffee Rust Epidemic: Educating Intuition with Theoretical Ecology.<br>BioScience, 2014, 64, 210-218.                                                                                                                          | 4.9  | 33        |
| 58 | Selfâ€organization of background habitat determines the nature of population spatial structure. Oikos, 2014, 123, 751-761.                                                                                                                                 | 2.7  | 11        |
| 59 | Forcing by rare species and intransitive loops creates distinct bouts of extinction events conditioned by spatial pattern in competition communities. Theoretical Ecology, 2013, 6, 395-404.                                                               | 1.0  | 5         |
| 60 | Ants defend coffee from berry borer colonization. BioControl, 2013, 58, 815-820.                                                                                                                                                                           | 2.0  | 60        |
| 61 | Ant Assemblage on a Coffee Farm: Spatial Mosaic Versus Shifting Patchwork. Environmental<br>Entomology, 2013, 42, 38-48.                                                                                                                                   | 1.4  | 16        |
| 62 | <i>Hypothenemus hampei</i> (Coleoptera: Curculionidae) and its Interactions With <i>Azteca<br/>instabilis</i> and <i>Pheidole synanthropica</i> (Hymenoptera: Formicidae) in a Shade Coffee<br>Agroecosystem. Environmental Entomology, 2013, 42, 915-924. | 1.4  | 33        |
| 63 | Food sovereignty: an alternative paradigm for poverty reduction and biodiversity conservation in Latin America. F1000Research, 2013, 2, 235.                                                                                                               | 1.6  | 81        |
| 64 | Global food security, biodiversity conservation and the future of agricultural intensification.<br>Biological Conservation, 2012, 151, 53-59.                                                                                                              | 4.1  | 1,414     |
| 65 | Anticipating Critical Transitions. Science, 2012, 338, 344-348.                                                                                                                                                                                            | 12.6 | 1,607     |
| 66 | Fragmenting forests: the double edge of effective forest monitoring. Environmental Science and Policy, 2012, 16, 20-30.                                                                                                                                    | 4.9  | 10        |
| 67 | Indirect biological control of the coffee leaf rust, Hemileia vastatrix, by the entomogenous fungus<br>Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 2012, 61, 89-97.                                                       | 3.0  | 64        |
| 68 | Self-organized spatial pattern determines biodiversity in spatial competition. Journal of Theoretical<br>Biology, 2012, 300, 48-56.                                                                                                                        | 1.7  | 48        |
| 69 | Mutualisms and Population Regulation: Mechanism Matters. PLoS ONE, 2012, 7, e43510.                                                                                                                                                                        | 2.5  | 21        |
| 70 | Ecological Complexity in a Coffee Agroecosystem: Spatial Heterogeneity, Population Persistence and<br>Biological Control. PLoS ONE, 2012, 7, e45508.                                                                                                       | 2.5  | 26        |
| 71 | Intransitive loops in ecosystem models: From stable foci to heteroclinic cycles. Ecological<br>Complexity, 2011, 8, 92-97.                                                                                                                                 | 2.9  | 29        |
| 72 | The inevitability of surprise in agroecosystems. Ecological Complexity, 2011, 8, 377-382.                                                                                                                                                                  | 2.9  | 8         |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Discovery Dominance Tradeoff: the Case of <i>Pheidole Subarmata</i> and <i>Solenopsis<br/>Geminata</i> (Hymenoptera: Formicidae) in Neotropical Pastures. Environmental Entomology, 2011, 40,<br>999-1006.    | 1.4  | 20        |
| 74 | Frugivory by five bird species in agroforest home gardens of Pontal do Paranapanema, Brazil.<br>Agroforestry Systems, 2011, 82, 239-246.                                                                      | 2.0  | 13        |
| 75 | Consequential classes of resources: Subtle global bifurcation with dramatic ecological consequences in a simple population model. Journal of Theoretical Biology, 2010, 263, 237-241.                         | 1.7  | 6         |
| 76 | Propagating sinks, ephemeral sources and percolating mosaics: conservation in landscapes. Landscape<br>Ecology, 2010, 25, 509-518.                                                                            | 4.2  | 29        |
| 77 | The agroecological matrix as alternative to the land-sparing/agriculture intensification model.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5786-5791.     | 7.1  | 516       |
| 78 | Ecological Complexity and Pest Control in Organic Coffee Production: Uncovering an Autonomous<br>Ecosystem Service. BioScience, 2010, 60, 527-537.                                                            | 4.9  | 204       |
| 79 | Growth and mortality patterns in a thinning canopy of post-hurricane regenerating rain forest in eastern Nicaragua (1990-2005). Revista De Biologia Tropical, 2010, 58, 1283-97.                              | 0.4  | 2         |
| 80 | Spatial Scale and Density Dependence in a Host Parasitoid System: An Arboreal Ant,Azteca instabilis,<br>and ItsPseudacteonPhorid Parasitoid. Environmental Entomology, 2009, 38, 790-796.                     | 1.4  | 32        |
| 81 | Evidence for hyperparasitism of coffee rust ( <i>Hemileia vastatrix</i> ) by the entomogenous fungus,<br><i>Lecanicillium lecanii</i> , through a complex ecological web. Plant Pathology, 2009, 58, 636-641. | 2.4  | 97        |
| 82 | When are habitat patches really islands?. Forest Ecology and Management, 2009, 258, 2033-2036.                                                                                                                | 3.2  | 6         |
| 83 | Wildlifeâ€friendly farming vs land sparing. Frontiers in Ecology and the Environment, 2009, 7, 183-184.                                                                                                       | 4.0  | 15        |
| 84 | Neotropical Forest Conservation, Agricultural Intensification, and Rural Out-migration: The Mexican Experience. BioScience, 2009, 59, 863-873.                                                                | 4.9  | 119       |
| 85 | Spatial and Temporal Dynamics of a Fungal Pathogen Promote Pattern Formation in a Tropical<br>Agroecosystem. Open Ecology Journal, 2009, 2, 62-73.                                                            | 2.0  | 19        |
| 86 | Biodiversity Conservation in Tropical Agroecosystems. Annals of the New York Academy of Sciences, 2008, 1134, 173-200.                                                                                        | 3.8  | 454       |
| 87 | Clusters of ant colonies and robust criticality in a tropical agroecosystem. Nature, 2008, 451, 457-459.                                                                                                      | 27.8 | 114       |
| 88 | The niche construction paradigm in ecological time. Ecological Modelling, 2008, 214, 385-390.                                                                                                                 | 2.5  | 11        |
| 89 | The importance of matrix quality in fragmented landscapes: Understanding ecosystem collapse through a combination of deterministic and stochastic forces. Ecological Complexity, 2008, 5, 222-227.            | 2.9  | 15        |
| 90 | Bats Limit Insects in a Neotropical Agroforestry System. Science, 2008, 320, 70-70.                                                                                                                           | 12.6 | 218       |

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Synergies between Agricultural Intensification and Climate Change Could Create Surprising<br>Vulnerabilities for Crops. BioScience, 2008, 58, 847-854.                             | 4.9  | 164       |
| 92  | SPATIAL PATTERN AND ECOLOGICAL PROCESS IN THE COFFEE AGROFORESTRY SYSTEM. Ecology, 2008, 89, 915-920.                                                                              | 3.2  | 69        |
| 93  | 19 The diverse faces of ecosystem engineers in agroecosystems. Theoretical Ecology Series, 2007, 4, 367-385.                                                                       | 0.2  | 3         |
| 94  | The Agricultural Matrix and a Future Paradigm for Conservation. Conservation Biology, 2007, 21, 274-277.                                                                           | 4.7  | 272       |
| 95  | Competitive coexistence through intermediate polyphagy. Ecological Complexity, 2006, 3, 37-43.                                                                                     | 2.9  | 25        |
| 96  | Effects of predation pressure on species packing on a resource gradient: insights from nonlinear dynamics. Theoretical Population Biology, 2006, 69, 395-408.                      | 1.1  | 5         |
| 97  | Oscillating Populations and Biodiversity Maintenance. BioScience, 2006, 56, 967.                                                                                                   | 4.9  | 62        |
| 98  | Omnivory and the stability of food webs. Journal of Theoretical Biology, 2006, 238, 497-504.                                                                                       | 1.7  | 88        |
| 99  | The effect of an ant-hemipteran mutualism on the coffee berry borer (Hypothenemus hampei) in southern Mexico. Agriculture, Ecosystems and Environment, 2006, 117, 218-221.         | 5.3  | 85        |
| 100 | Effects of Management Intensity and Season on Arboreal Ant Diversity and Abundance in Coffee Agroecosystems. Biodiversity and Conservation, 2006, 15, 139-155.                     | 2.6  | 63        |
| 101 | A Keystone Mutualism Drives Pattern in a Power Function. Science, 2006, 311, 1000-1002.                                                                                            | 12.6 | 47        |
| 102 | Effects of management intensity and season on arboreal ant diversity and abundance in coffee agroecosystems. , 2006, , 125-141.                                                    |      | 2         |
| 103 | Aboveground Biomass Accumulation in a Tropical Wet Forest in Nicaragua Following a Catastrophic<br>Hurricane Disturbance1. Biotropica, 2005, 37, 600-608.                          | 1.6  | 24        |
| 104 | Biodiversity, yield, and shade coffee certification. Ecological Economics, 2005, 54, 435-446.                                                                                      | 5.7  | 294       |
| 105 | The Future of Farming and Conservation. Science, 2005, 308, 1257b-1258b.                                                                                                           | 12.6 | 45        |
| 106 | Enigmatic Biodiversity Correlations: Ant Diversity Responds to Diverse Resources. Science, 2004, 304, 284-286.                                                                     | 12.6 | 147       |
| 107 | Gypsy Moth Defoliation of Oak Trees and a Positive Response of Red Maple and Black Cherry: An<br>Example of Indirect Interaction. American Midland Naturalist, 2004, 152, 231-236. | 0.4  | 31        |
| 108 | Dispersal-induced desynchronization: from metapopulations to metacommunities. Ecology Letters, 2004, 8, 167-175.                                                                   | 6.4  | 76        |

JOHN VANDERMEER

| #   | Article                                                                                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Taking trophic cascades up a level: behaviorally-modified effects of phorid flies on ants and ant prey in coffee agroecosystems. Oikos, 2004, 105, 141-147.                                                                                                                                                                                                                       | 2.7  | 53        |
| 110 | Wada basins and qualitative unpredictability in ecological models: a graphical interpretation.<br>Ecological Modelling, 2004, 176, 65-74.                                                                                                                                                                                                                                         | 2.5  | 29        |
| 111 | Chaos in Ecology: Experimental Nonlinear Dynamics. Theoretical Ecology Series. By JÂMÂ Cushing, , RÂFÂ<br>Costantino, , Brian Dennis, , RobertÂA Desharnais, and , ShandelleÂM Henson. Academic Press. Amsterdam<br>and Boston (Massachusetts): Elsevier Science. \$65.00. xiv + 225 p; ill.; index. ISBN: 0–12–198876–7. 2003<br>Ouarterly Review of Biology. 2004. 79. 104-106. | 0.1  | 0         |
| 112 | Coupled Oscillations in Food Webs: Balancing Competition and Mutualism in Simple Ecological<br>Models. American Naturalist, 2004, 163, 857-867.                                                                                                                                                                                                                                   | 2.1  | 65        |
| 113 | Height dynamics of the thinning canopy of a tropical rain forest: 14 years of succession in a post-hurricane forest in Nicaragua. Forest Ecology and Management, 2004, 199, 125-135.                                                                                                                                                                                              | 3.2  | 27        |
| 114 | MULTIPLE BASINS OF ATTRACTION IN A TROPICAL FOREST: EVIDENCE FOR NONEQUILIBRIUM COMMUNITY STRUCTURE. Ecology, 2004, 85, 575-579.                                                                                                                                                                                                                                                  | 3.2  | 61        |
| 115 | Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico.<br>Biodiversity and Conservation, 2003, 12, 1239-1252.                                                                                                                                                                                                                           | 2.6  | 248       |
| 116 | Post-Agricultural Succession in El Peten, Guatemala. Conservation Biology, 2003, 17, 818-828.                                                                                                                                                                                                                                                                                     | 4.7  | 82        |
| 117 | Increased competition may promote species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8731-8736.                                                                                                                                                                                                                      | 7.1  | 53        |
| 118 | Quality of Agroecological Matrix in a Tropical Montane Landscape: Ants in Coffee Plantations in Southern Mexico. Conservation Biology, 2002, 16, 174-182.                                                                                                                                                                                                                         | 4.7  | 272       |
| 119 | Title is missing!. Agroforestry Systems, 2002, 56, 271-276.                                                                                                                                                                                                                                                                                                                       | 2.0  | 87        |
| 120 | Growth and development of the thinning canopy in a post-hurricane tropical rain forest in Nicaragua.<br>Forest Ecology and Management, 2001, 148, 221-242.                                                                                                                                                                                                                        | 3.2  | 22        |
| 121 | Metapopulation Dynamics and the Quality of the Matrix. American Naturalist, 2001, 158, 211-220.                                                                                                                                                                                                                                                                                   | 2.1  | 230       |
| 122 | Categories of chaos and fractal basin boundaries in forced predator–prey models. Chaos, Solitons<br>and Fractals, 2001, 12, 265-276.                                                                                                                                                                                                                                              | 5.1  | 63        |
| 123 | Effect of Habitat Fragmentation on Gypsy Moth (Lymantria dispar L.) Dispersal: The Quality of the<br>Matrix. American Midland Naturalist, 2001, 145, 188-193.                                                                                                                                                                                                                     | 0.4  | 9         |
| 124 | Hurricane Disturbance and Tropical Tree Species Diversity. Science, 2000, 290, 788-791.                                                                                                                                                                                                                                                                                           | 12.6 | 138       |
| 125 | BASIN BOUNDARY COLLISION AS A MODEL OF DISCONTINUOUS CHANGE IN ECOSYSTEMS. Ecology, 1999, 80, 1817-1827.                                                                                                                                                                                                                                                                          | 3.2  | 55        |
| 126 | Maximizing crop yield in alley crops. Agroforestry Systems, 1998, 40, 199-206.                                                                                                                                                                                                                                                                                                    | 2.0  | 19        |

8

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Growth Rates of Tree Height Six Years after Hurricane Damage at Four Localities in Eastern<br>Nicaragua1. Biotropica, 1998, 30, 502-509.                                                                              | 1.6 | 39        |
| 128 | Global change and multi-species agroecosystems: Concepts and issues. Agriculture, Ecosystems and Environment, 1998, 67, 1-22.                                                                                         | 5.3 | 291       |
| 129 | Models of coupled population oscillators using 1-D maps. Journal of Mathematical Biology, 1998, 37, 178-202.                                                                                                          | 1.9 | 9         |
| 130 | Indirect Effects with a Keystone Predator: Coexistence and Chaos. Theoretical Population Biology, 1998, 54, 38-43.                                                                                                    | 1.1 | 22        |
| 131 | The political ecology of deforestation in Central America. Science As Culture, 1998, 7, 519-555.                                                                                                                      | 3.2 | 2         |
| 132 | Period â€`bubbling' in simple ecological models: Pattern and chaos formation in a quartic model.<br>Ecological Modelling, 1997, 95, 311-317.                                                                          | 2.5 | 32        |
| 133 | Contrasting Growth Rate Patterns in Eighteen Tree Species From a Post-Hurricane Forest in Nicaragua1. Biotropica, 1997, 29, 151-161.                                                                                  | 1.6 | 27        |
| 134 | Arthropod biodiversity loss and the transformation of a tropical agro-ecosystem. Biodiversity and Conservation, 1997, 6, 935-945.                                                                                     | 2.6 | 159       |
| 135 | The Agroecosystem: A Need for the Conservation Biologist's Lens. Conservation Biology, 1997, 11, 591-592.                                                                                                             | 4.7 | 115       |
| 136 | Syndromes of Production: an Emergent Property of Simple Agroecosystem Dynamics. Journal of Environmental Management, 1997, 51, 59-72.                                                                                 | 7.8 | 19        |
| 137 | Disturbance and neutral competition theory in rain forest dynamics. Ecological Modelling, 1996, 85, 99-111.                                                                                                           | 2.5 | 13        |
| 138 | A Theory of Disturbance and Species Diversity: Evidence from Nicaragua After Hurricane Joan.<br>Biotropica, 1996, 28, 600.                                                                                            | 1.6 | 51        |
| 139 | Three years of ingrowth following catastrophic hurricane damage on the Caribbean coast of<br>Nicaragua: evidence in support of the direct regeneration hypothesis. Journal of Tropical Ecology,<br>1995, 11, 465-471. | 1.1 | 52        |
| 140 | The qualitative behavior of coupled predator-prey oscillations as deduced from simple circle maps.<br>Ecological Modelling, 1994, 73, 135-148.                                                                        | 2.5 | 10        |
| 141 | Cuba and the dilemma of modern agriculture. Agriculture and Human Values, 1993, 10, 3-8.                                                                                                                              | 3.0 | 9         |
| 142 | Management of insect pests and weeds. Agriculture and Human Values, 1993, 10, 9-15.                                                                                                                                   | 3.0 | 12        |
| 143 | Distribution and Turnover Rate of a Population of Atta cephalotes in a Tropical Rain Forest in Costa<br>Rica. Biotropica, 1993, 25, 316.                                                                              | 1.6 | 43        |
| 144 | Loose Coupling of Predator-Prey Cycles: Entrainment, Chaos, and Intermittency in the Classic<br>Macarthur Consumer-Resource Equations. American Naturalist, 1993, 141, 687-716.                                       | 2.1 | 78        |

JOHN VANDERMEER

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Contributions to the global analysis of 3-D Lotka-Volterra equations: Dynamic boundedness and indirect interactions in the case of one predator and two prey. Journal of Theoretical Biology, 1991, 148, 545-561.                                   | 1.7 | 16        |
| 146 | Indirect and difuse interactions: Complicated cycles in a population embedded in a large community.<br>Journal of Theoretical Biology, 1990, 142, 429-442.                                                                                          | 1.7 | 33        |
| 147 | Notes on Agroecosystem Complexity: Chaotic Price and Production Trajectories Deducible from<br>Simple One-Dimensional Maps. Biological Agriculture and Horticulture, 1990, 6, 293-304.                                                              | 1.0 | 4         |
| 148 | An epidemiological model of the corn stunt system in Central America. Ecological Modelling, 1990, 52, 235-248.                                                                                                                                      | 2.5 | 16        |
| 149 | Prophylactic and Responsive Components of an Integrated Pest Management Program. Journal of Economic Entomology, 1986, 79, 299-302.                                                                                                                 | 1.8 | 18        |
| 150 | A Computer-based Technique for Rapidly Screening Intercropping Designs. Experimental Agriculture, 1986, 22, 215-232.                                                                                                                                | 0.9 | 12        |
| 151 | Effects of Plant Diversity and Density on the Emigration Rate of Two Ground Beetles, Harpalus<br>pennsylvanicus and Evarthrus sodalis (Coleoptera: Carabidae), in a System of Tomatoes and Beans.<br>Environmental Entomology, 1986, 15, 1028-1031. | 1.4 | 22        |
| 152 | The Ecology of Tropical Food Crops.M. J. T. Norman , C. J. Pearson , P. G. E. Searle. Quarterly Review of<br>Biology, 1986, 61, 109-110.                                                                                                            | 0.1 | 0         |
| 153 | Community Structure and the Niche. Outline Studies in Ecology. Paul S. Giller , George M. Dunnet ,<br>Charles H. Gimingham. Quarterly Review of Biology, 1985, 60, 531-532.                                                                         | 0.1 | 0         |
| 154 | The Interpretation and Design of Intercrop Systems Involving Environmental Modification by One of the Components: A Theoretical Framework. Biological Agriculture and Horticulture, 1984, 2, 135-156.                                               | 1.0 | 13        |
| 155 | Plant competition and the yield-density relationship. Journal of Theoretical Biology, 1984, 109, 393-399.                                                                                                                                           | 1.7 | 51        |
| 156 | An ecologically-based approach to the design of intercrop agroecosystems: An intercropping system of soybeans and tomatoes in Southern Michigan. Ecological Modelling, 1984, 25, 121-150.                                                           | 2.5 | 4         |
| 157 | Overyielding in a Corn-Cowpea System in Southern Mexico. Biological Agriculture and Horticulture, 1983, 1, 83-96.                                                                                                                                   | 1.0 | 4         |
| 158 | A Limited View of the Environment The Environment: Issues and Choices for Society Penelope ReVelle<br>Charles ReVelle. BioScience, 1983, 33, 222-222.                                                                                               | 4.9 | 0         |
| 159 | An experiment in intercropping cucumbers and tomatoes in Southern Michigan, U.S.A Scientia<br>Horticulturae, 1982, 18, 1-8.                                                                                                                         | 3.6 | 22        |
| 160 | The Interference Production Principle: An Ecological Theory for Agriculture. BioScience, 1981, 31, 361-364.                                                                                                                                         | 4.9 | 84        |
| 161 | A Further Note on Community Models. American Naturalist, 1981, 117, 379-380.                                                                                                                                                                        | 2.1 | 4         |
| 162 | Indirect Mutualism: Variations on a Theme by Stephen Levine. American Naturalist, 1980, 116, 441-448.                                                                                                                                               | 2.1 | 180       |

JOHN VANDERMEER

| #   | Article                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Migration as a Factor in the Community Structure of a Macroarthropod Litter Fauna. American<br>Naturalist, 1980, 115, 606-612.                      | 2.1 | 3         |
| 164 | Choosing category size in a stage projection matrix. Oecologia, 1978, 32, 79-84.                                                                    | 2.0 | 126       |
| 165 | Comparison of Species Richness for Stream-Inhabiting Insects in Tropical and Mid-Latitude Streams.<br>American Naturalist, 1975, 109, 263-280.      | 2.1 | 149       |
| 166 | Observations of Paramecium Occupying Arboreal Standing Water in Costa Rica. Ecology, 1972, 53, 291-293.                                             | 3.2 | 11        |
| 167 | Complex Traditions: Intersecting Theoretical Frameworks in Agroecological Research. Agroecology and Sustainable Food Systems, 0, , 120911083004002. | 0.9 | 19        |
| 168 | Ecological Complexity and Agroecology. , 0, , .                                                                                                     |     | 20        |