## Santos A. Susin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4007475/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999, 397, 441-446.                                                                                                                   | 13.7 | 3,697     |
| 2  | Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death Journal of Experimental Medicine, 1995, 182, 367-377.                         | 4.2  | 1,509     |
| 3  | Mitochondrial control of apoptosis. Trends in Immunology, 1997, 18, 44-51.                                                                                                                                           | 7.5  | 1,401     |
| 4  | Mitochondrial control of nuclear apoptosis Journal of Experimental Medicine, 1996, 183, 1533-1544.                                                                                                                   | 4.2  | 1,318     |
| 5  | Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 2001, 410, 549-554.                                                                                                  | 13.7 | 1,212     |
| 6  | Bcl-2 inhibits the mitochondrial release of an apoptogenic protease Journal of Experimental<br>Medicine, 1996, 184, 1331-1341.                                                                                       | 4.2  | 1,109     |
| 7  | Bax and Adenine Nucleotide Translocator Cooperate in the Mitochondrial Control of Apoptosis. ,<br>1998, 281, 2027-2031.                                                                                              |      | 1,061     |
| 8  | Hsp27 negatively regulates cell death by interacting with cytochrome c. Nature Cell Biology, 2000, 2, 645-652.                                                                                                       | 4.6  | 882       |
| 9  | Mitochondrial permeability transition is a central coordinating event of apoptosis Journal of<br>Experimental Medicine, 1996, 184, 1155-1160.                                                                        | 4.2  | 821       |
| 10 | Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 2001, 3, 839-843.                                                                                                                  | 4.6  | 790       |
| 11 | Mitochondrioâ€nuclear translocation of AIF in apoptosis and necrosis. FASEB Journal, 2000, 14, 729-739.                                                                                                              | 0.2  | 723       |
| 12 | Mitochondria as regulators of apoptosis: doubt no more. Biochimica Et Biophysica Acta -<br>Bioenergetics, 1998, 1366, 151-165.                                                                                       | 0.5  | 697       |
| 13 | Mitochondrial Release of Caspase-2 and -9 during the Apoptotic Process. Journal of Experimental Medicine, 1999, 189, 381-394.                                                                                        | 4.2  | 678       |
| 14 | Two Distinct Pathways Leading to Nuclear Apoptosis. Journal of Experimental Medicine, 2000, 192, 571-580.                                                                                                            | 4.2  | 665       |
| 15 | The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins. Journal of Experimental Medicine, 1998, 187, 1261-1271.                                          | 4.2  | 657       |
| 16 | The Central Executioner of Apoptosis: Multiple Connections between Protease Activation and<br>Mitochondria in Fas/APO-1/CD95- and Ceramide-induced Apoptosis. Journal of Experimental Medicine,<br>1997, 186, 25-37. | 4.2  | 615       |
| 17 | Mitochondria and programmed cell death: back to the future. FEBS Letters, 1996, 396, 7-13.                                                                                                                           | 1.3  | 459       |
| 18 | Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death.<br>Cell Death and Differentiation, 1999, 6, 516-524.                                                            | 5.0  | 452       |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene, 1997, 15, 1573-1581.                                 | 2.6 | 443       |
| 20 | The HIV-1 Viral Protein R Induces Apoptosis via a Direct Effect on the Mitochondrial Permeability Transition Pore. Journal of Experimental Medicine, 2000, 191, 33-46.                                       | 4.2 | 428       |
| 21 | Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Letters, 1996, 384, 53-57.                                           | 1.3 | 400       |
| 22 | Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis.<br>FEBS Letters, 2000, 476, 118-123.                                                                       | 1.3 | 390       |
| 23 | Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene, 1998, 16, 2265-2282.                                                                                                   | 2.6 | 385       |
| 24 | NADH Oxidase Activity of Mitochondrial Apoptosis-inducing Factor. Journal of Biological Chemistry, 2001, 276, 16391-16398.                                                                                   | 1.6 | 344       |
| 25 | Activation of Mitochondria and Release of Mitochondrial Apoptogenic Factors by Betulinic Acid.<br>Journal of Biological Chemistry, 1998, 273, 33942-33948.                                                   | 1.6 | 323       |
| 26 | Sequential Activation of Poly(ADP-Ribose) Polymerase 1, Calpains, and Bax Is Essential in<br>Apoptosis-Inducing Factor-Mediated Programmed Necrosis. Molecular and Cellular Biology, 2007, 27,<br>4844-4862. | 1.1 | 298       |
| 27 | Arsenite Induces Apoptosis via a Direct Effect on the Mitochondrial Permeability Transition Pore.<br>Experimental Cell Research, 1999, 249, 413-421.                                                         | 1.2 | 283       |
| 28 | Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces<br>Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene, 2000, 19, 307-314.                  | 2.6 | 276       |
| 29 | Programmed cell death via mitochondria: Different modes of dying. Biochemistry (Moscow), 2005, 70, 231-239.                                                                                                  | 0.7 | 274       |
| 30 | Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Letters, 1998, 426, 111-116.                                | 1.3 | 266       |
| 31 | PK11195, a Ligand of the Mitochondrial Benzodiazepine Receptor, Facilitates the Induction of Apoptosis and Reverses Bcl-2-Mediated Cytoprotection. Experimental Cell Research, 1998, 241, 426-434.           | 1.2 | 249       |
| 32 | Dominant cell death induction by extramitochondrially targeted apoptosisâ€inducing factor. FASEB<br>Journal, 2001, 15, 758-767.                                                                              | 0.2 | 226       |
| 33 | Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. Journal of Immunology, 1996, 157, 512-21.                                                         | 0.4 | 224       |
| 34 | Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Letters, 1997, 410, 373-377.                                                                                       | 1.3 | 220       |
| 35 | Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene, 2001, 20, 1063-1075.                                                                        | 2.6 | 220       |
| 36 | Apoptosis Control in Syncytia Induced by the HIV Type 1–Envelope Glycoprotein Complex. Journal of Experimental Medicine, 2000, 192, 1081-1092.                                                               | 4.2 | 217       |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Redox regulation of apoptosis: Impact of thiol oxidation status on mitochondrial function. European<br>Journal of Immunology, 1997, 27, 289-296.                                                                                       | 1.6 | 210       |
| 38 | Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. Journal of Immunology, 1997, 158, 4612-9.                                                                                              | 0.4 | 205       |
| 39 | AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO Journal, 2010, 29, 1585-1599.                                                                                          | 3.5 | 197       |
| 40 | Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis<br>of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunology<br>Letters, 1998, 61, 157-163. | 1.1 | 195       |
| 41 | Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene, 1999, 18, 2537-2546.                                                                                   | 2.6 | 194       |
| 42 | Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death and Differentiation, 2000, 7, 1263-1269.                                                                               | 5.0 | 179       |
| 43 | CD3 ganglioside directly targets mitochondria in a bclâ€2â€controlled fashion. FASEB Journal, 2000, 14, 2047-2054.                                                                                                                     | 0.2 | 175       |
| 44 | Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death and Differentiation, 2000, 7, 137-144.                                                                         | 5.0 | 168       |
| 45 | Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA.<br>Cancer Research, 1996, 56, 2033-8.                                                                                                   | 0.4 | 166       |
| 46 | The crystal structure of the mouse apoptosis-inducing factor AIF. Nature Structural Biology, 2002, 9, 442-446.                                                                                                                         | 9.7 | 163       |
| 47 | Mitochondrial permeability transition triggers lymphocyte apoptosis. Journal of Immunology, 1996, 157, 4830-6.                                                                                                                         | 0.4 | 163       |
| 48 | Chloromethyl-X-rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis. Cytometry, 1996, 25, 333-340.                                                                                    | 1.8 | 161       |
| 49 | Relocalization of Apoptosis-Inducing Factor in Photoreceptor Apoptosis Induced by Retinal<br>Detachment in Vivo. American Journal of Pathology, 2001, 158, 1271-1278.                                                                  | 1.9 | 160       |
| 50 | Mitochondrial effectors in caspase-independent cell death. FEBS Letters, 2004, 557, 14-20.                                                                                                                                             | 1.3 | 157       |
| 51 | AIF-Mediated Programmed Necrosis: A Highly Orchestrated Way to Die. Cell Cycle, 2007, 6, 2612-2619.                                                                                                                                    | 1.3 | 153       |
| 52 | The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene, 1998, 16, 1055-1063.                                                             | 2.6 | 149       |
| 53 | AlFâ€mediated caspaseâ€independent necroptosis: A new chance for targeted therapeutics. IUBMB Life, 2011, 63, 221-232.                                                                                                                 | 1.5 | 148       |
| 54 | Critical role of photoreceptor apoptosis in functional damage after retinal detachment. Current Eye<br>Research, 2002, 24, 161-172.                                                                                                    | 0.7 | 137       |

| #  | Article                                                                                                                                                                                                                                        | IF         | CITATIONS      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 55 | Apoptosisâ€Inducing Factor Mediates Microglial and Neuronal Apoptosis Caused by Pneumococcus.<br>Journal of Infectious Diseases, 2001, 184, 1300-1309.                                                                                         | 1.9        | 128            |
| 56 | Mitochondrial Membrane Permeabilization during the Apoptotic Process. Annals of the New York<br>Academy of Sciences, 1999, 887, 18-30.                                                                                                         | 1.8        | 127            |
| 57 | Caspases disrupt mitochondrial membrane barrier function. FEBS Letters, 1998, 427, 198-202.                                                                                                                                                    | 1.3        | 123            |
| 58 | The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced "Turbo" Ferric Chelate<br>Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and) Tj ETQqC                               | ) 0 Ø.8gBT | /Ovuentiock 10 |
| 59 | Mitochondrial permeability transition in apoptosis and necrosis. Cell Biology and Toxicology, 1998, 14, 141-145.                                                                                                                               | 2.4        | 121            |
| 60 | Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell<br>Death and Differentiation, 2005, 12, 1445-1448.                                                                                           | 5.0        | 119            |
| 61 | Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resistance<br>Updates, 2007, 10, 235-255.                                                                                                                | 6.5        | 118            |
| 62 | HIV induces lymphocyte apoptosis by a p53â€initiated, mitochondrialâ€mediated mechanism. FASEB Journal,<br>2001, 15, 5-6.                                                                                                                      | 0.2        | 114            |
| 63 | BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death and Differentiation, 2012, 19, 245-256.                                                                                                     | 5.0        | 110            |
| 64 | A Role of the Mitochondrial Apoptosis-Inducing Factor in Granulysin-Induced Apoptosis. Journal of<br>Immunology, 2001, 167, 1222-1229.                                                                                                         | 0.4        | 103            |
| 65 | Drp1 Mediates Caspase-Independent Type III Cell Death in Normal and Leukemic Cells. Molecular and Cellular Biology, 2007, 27, 7073-7088.                                                                                                       | 1.1        | 98             |
| 66 | The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger<br>apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Research, 1999, 59,<br>6257-66.                                | 0.4        | 98             |
| 67 | Clearance of Apoptotic Photoreceptors. American Journal of Pathology, 2003, 162, 1869-1879.                                                                                                                                                    | 1.9        | 94             |
| 68 | Histone H2AX: The missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle, 2010, 9, 3186-3193.                                                                                                                        | 1.3        | 86             |
| 69 | Caspase-independent commitment phase to apoptosis in activated blood T lymphocytes: reversibility at<br>low apoptotic insult. Blood, 2000, 96, 1030-1038.                                                                                      | 0.6        | 84             |
| 70 | AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death and Disease, 2012, 3, e390-e390.                                                                                  | 2.7        | 82             |
| 71 | The Contribution of Apoptosis-inducing Factor, Caspase-activated DNase, and Inhibitor of<br>Caspase-activated DNase to the Nuclear Phenotype and DNA Degradation during Apoptosis. Journal of<br>Biological Chemistry, 2005, 280, 35670-35683. | 1.6        | 80             |
| 72 | A Cytofluorometric Assay of Nuclear Apoptosis Induced in a Cell-Free System: Application to Ceramide-Induced Apoptosis. Experimental Cell Research, 1997, 236, 397-403.                                                                        | 1.2        | 73             |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | CD47 in the Immune Response: Role of Thrombospondin and SIRP-α Reverse Signaling. Current<br>Drug Targets, 2008, 9, 842-850.                                                                                                         | 1.0 | 73        |
| 74 | p16Ink4A, not only a G <sub>1</sub> inhibitor?. Cell Cycle, 2010, 9, 3166-3170.                                                                                                                                                      | 1.3 | 72        |
| 75 | Palmitate induces apoptosis via a direct effect on mitochondria. Apoptosis: an International Journal<br>on Programmed Cell Death, 1999, 4, 81-87.                                                                                    | 2.2 | 71        |
| 76 | AIFsh, a Novel Apoptosis-inducing Factor (AIF) Pro-apoptotic Isoform with Potential Pathological<br>Relevance in Human Cancer. Journal of Biological Chemistry, 2006, 281, 6413-6427.                                                | 1.6 | 71        |
| 77 | Pre-processed caspase-9 contained in mitochondria participates in apoptosis. Cell Death and Differentiation, 2002, 9, 82-88.                                                                                                         | 5.0 | 65        |
| 78 | CD47 Agonist Peptides Induce Programmed Cell Death in Refractory Chronic Lymphocytic Leukemia B<br>Cells via PLCl <sup>3</sup> 1 Activation: Evidence from Mice and Humans. PLoS Medicine, 2015, 12, e1001796.                       | 3.9 | 65        |
| 79 | Flavin excretion from roots of iron-deficient sugar beet (Beta vulgaris L.). Planta, 1994, 193, 514-519.                                                                                                                             | 1.6 | 62        |
| 80 | Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under<br>different forms of oxidative stress. Apoptosis: an International Journal on Programmed Cell Death,<br>2006, 11, 673-686.             | 2.2 | 54        |
| 81 | Structural Insights into the Coenzyme Mediated Monomer–Dimer Transition of the Pro-Apoptotic<br>Apoptosis Inducing Factor. Biochemistry, 2014, 53, 4204-4215.                                                                        | 1.2 | 52        |
| 82 | <scp>CD</scp> 47 agonist peptide <scp>PKHB</scp> 1 induces immunogenic cell death in Tâ€eell acute<br>lymphoblastic leukemia cells. Cancer Science, 2019, 110, 256-268.                                                              | 1.7 | 52        |
| 83 | A Dual Role of IFN-α in the Balance between Proliferation and Death of Human CD4+ T Lymphocytes during Primary Response. Journal of Immunology, 2004, 173, 3740-3747.                                                                | 0.4 | 51        |
| 84 | Identification and Characterization of AIFsh2, a Mitochondrial Apoptosis-inducing Factor (AIF)<br>Isoform with NADH Oxidase Activity. Journal of Biological Chemistry, 2006, 281, 18507-18518.                                       | 1.6 | 51        |
| 85 | AIF loss deregulates hematopoiesis and reveals different adaptive metabolic responses in bone marrow cells and thymocytes. Cell Death and Differentiation, 2018, 25, 983-1001.                                                       | 5.0 | 49        |
| 86 | Purification of Mitochondria for Apoptosis Assays. Methods in Enzymology, 2000, 322, 205-208.                                                                                                                                        | 0.4 | 48        |
| 87 | Mitochondrial dysfunction in CD47-mediated caspase-independent cell death: ROS production in the absence of cytochrome c and AIF release. Biochimie, 2003, 85, 741-746.                                                              | 1.3 | 48        |
| 88 | Use of Penetrating Peptides Interacting with PP1/PP2A Proteins As a General Approach for a Drug Phosphatase Technology. Molecular Pharmacology, 2006, 69, 1115-1124.                                                                 | 1.0 | 46        |
| 89 | CD44 ligation induces caspase-independent cell death via a novel calpain/AIF pathway in human erythroleukemia cells. Oncogene, 2006, 25, 5741-5751.                                                                                  | 2.6 | 45        |
| 90 | Annonaceous Acetogenins: The Hydroxyl Groups and THF Rings Are Crucial Structural Elements for<br>Targeting the Mitochondria, Demonstration with the Synthesis of Fluorescent Squamocin Analogues.<br>ChemBioChem, 2005, 6, 979-982. | 1.3 | 42        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner?. Cancers, 2018, 10, 336.                                                                                                          | 1.7 | 40        |
| 92  | Expression of dengue ApoptoM sequence results in disruption of mitochondrial potential and caspase activation. Biochimie, 2003, 85, 789-793.                                                                               | 1.3 | 38        |
| 93  | Gain in the short arm of chromosome 2 (2p+) induces gene overexpression and drug resistance in chronic lymphocytic leukemia: analysis of the central role of XPO1. Leukemia, 2017, 31, 1625-1629.                          | 3.3 | 38        |
| 94  | Expression of cortical and hippocampal apoptosis-inducing factor (AIF) in aging and Alzheimer's disease. Neurobiology of Aging, 2007, 28, 351-356.                                                                         | 1.5 | 35        |
| 95  | High level of Bcl-2 counteracts apoptosis mediated by a live rabies virus vaccine strain and induces long-term infection. Virology, 2003, 314, 549-561.                                                                    | 1.1 | 34        |
| 96  | Thrombospondin-1 Mimetic Agonist Peptides Induce Selective Death in Tumor Cells: Design, Synthesis,<br>and Structure–Activity Relationship Studies. Journal of Medicinal Chemistry, 2016, 59, 8412-8421.                   | 2.9 | 29        |
| 97  | Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of the F-actin cytoskeleton. Haematologica, 2009, 94, 507-517.                                                            | 1.7 | 26        |
| 98  | Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochemical Pharmacology, 2010, 79, 1746-1758.                                                  | 2.0 | 26        |
| 99  | CD47Low Status on CD4 Effectors Is Necessary for the Contraction/Resolution of the Immune Response in Humans and Mice. PLoS ONE, 2012, 7, e41972.                                                                          | 1.1 | 26        |
| 100 | Mitochondrial AIF loss causes metabolic reprogramming, caspase-independent cell death blockade,<br>embryonic lethality, and perinatal hydrocephalus. Molecular Metabolism, 2020, 40, 101027.                               | 3.0 | 26        |
| 101 | Apoptosis Inversely Correlates with Rabies Virus Neurotropism. Annals of the New York Academy of Sciences, 2003, 1010, 598-603.                                                                                            | 1.8 | 25        |
| 102 | Key Residues Regulating the Reductase Activity of the Human Mitochondrial Apoptosis Inducing<br>Factor. Biochemistry, 2015, 54, 5175-5184.                                                                                 | 1.2 | 25        |
| 103 | Highly cytotoxic and neurotoxic acetogenins of the Annonaceae: New putative biological targets of squamocin detected by activity-based protein profiling. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5741-5744. | 1.0 | 22        |
| 104 | Concomitant elevations of MMPâ€9, NGAL, proMMPâ€9/NGAL and neutrophil elastase in serum of smokers<br>with chronic obstructive pulmonary disease. Journal of Cellular and Molecular Medicine, 2017, 21,<br>1280-1291.      | 1.6 | 22        |
| 105 | CD47high Expression on CD4 Effectors Identifies Functional Long-Lived Memory T Cell Progenitors.<br>Journal of Immunology, 2012, 188, 4249-4255.                                                                           | 0.4 | 20        |
| 106 | Involvement of apoptosis-inducing factor during dolichyl monophosphate-induced apoptosis in U937<br>cells. FEBS Letters, 2000, 480, 197-200.                                                                               | 1.3 | 19        |
| 107 | Genetic characterization of B-cell prolymphocytic leukemia: a prognostic model involving MYC and TP53. Blood, 2019, 134, 1821-1831.                                                                                        | 0.6 | 18        |
| 108 | Semisynthesis and Screening of a Small Library of Pro-Apoptotic Squamocin Analogues: Selection and<br>Study of a Benzoquinone Hybrid with an Improved Biological Profile ChemMedChem, 2006, 1, 118-129.                    | 1.6 | 17        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Functional assessment of p53 in chronic lymphocytic leukemia. Blood Cancer Journal, 2011, 1, e5-e5.                                                                                                                | 2.8 | 13        |
| 110 | "Doubleâ€hit―chronic lymphocytic leukemia: An aggressive subgroup with 17p deletion and 8q24 gain.<br>American Journal of Hematology, 2018, 93, 375-382.                                                           | 2.0 | 13        |
| 111 | Targeting chronic lymphocytic leukemia with N-methylated thrombospondin-1–derived peptides overcomes drug resistance. Blood Advances, 2019, 3, 2920-2933.                                                          | 2.5 | 11        |
| 112 | Gain of the short arm of chromosome 2 (2p gain) has a significant role in drugâ€resistant chronic<br>lymphocytic leukemia. Cancer Medicine, 2019, 8, 3131-3141.                                                    | 1.3 | 10        |
| 113 | The Oxido-reductase Activity of the Apoptosis Inducing Factor: A Promising Pharmacological Tool?.<br>Current Pharmaceutical Design, 2013, 19, 2628-2636.                                                           | 0.9 | 10        |
| 114 | Caspase-independent type III PCD: a new means to modulate cell death in chronic lymphocytic leukemia.<br>Leukemia, 2009, 23, 974-977.                                                                              | 3.3 | 9         |
| 115 | Activation of Interferon Signaling in Chronic Lymphocytic Leukemia Cells Contributes to Apoptosis<br>Resistance via a JAK-Src/STAT3/Mcl-1 Signaling Pathway. Biomedicines, 2021, 9, 188.                           | 1.4 | 8         |
| 116 | Caspase-independent commitment phase to apoptosis in activated blood T lymphocytes: reversibility at<br>low apoptotic insult. Blood, 2000, 96, 1030-1038.                                                          | 0.6 | 8         |
| 117 | Thermospray and electrospray mass spectrometry of flavocoenzymes. Analysis of riboflavin sulphates from sugar beet. Analytica Chimica Acta, 1995, 302, 215-223.                                                    | 2.6 | 7         |
| 118 | Authors' response: Chloromethyl-X-Rosamine?A fluorochrome for the determination of the mitochondrial transmembrane potential. Cytometry, 1998, 31, 75-75.                                                          | 1.8 | 7         |
| 119 | Mitochondrial OXPHOS influences immune cell fate: lessons from hematopoietic AIF-deficient and NDUFS4-deficient mouse models. Cell Death and Disease, 2018, 9, 581.                                                | 2.7 | 7         |
| 120 | Relation of Neutrophil Gelatinase-Associated Lipocalin Overexpression to the Resistance to Apoptosis of Tumor B Cells in Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 2124.                                    | 1.7 | 7         |
| 121 | Cytofluorometric Quantitation of Nuclear Apoptosis Induced in a Cell-Free System. Methods in Enzymology, 2000, 322, 198-201.                                                                                       | 0.4 | 5         |
| 122 | Photosynthetic characteristics of iron chlorotic pear(Pyrus commuaisL.). Journal of Plant Nutrition, 1992, 15, 1783-1790.                                                                                          | 0.9 | 4         |
| 123 | Homotrimerization Approach in the Design of Thrombospondin-1 Mimetic Peptides with Improved<br>Potency in Triggering Regulated Cell Death of Cancer Cells. Journal of Medicinal Chemistry, 2019, 62,<br>7656-7668. | 2.9 | 4         |
| 124 | Simplification of complex peptide mixtures for proteomic analysis: Reversible biotinylation of cysteinyl peptides. Electrophoresis, 2000, 21, 1635-1650.                                                           | 1.3 | 2         |
| 125 | Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules, 2022, 12, 901.                                                                                                | 1.8 | 2         |
| 126 | The Gain of the Short Arm of Chromosome 2 (2p+) Induces XPO1 Overexpression and Drug Resistance<br>in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 492-492.                                                     | 0.6 | 1         |

| #   | Article                                                                                     | IF | CITATIONS |
|-----|---------------------------------------------------------------------------------------------|----|-----------|
| 127 | Programmed Necrosis: A "New―Cell Death Outcome for Injured Adult Neurons?. , 2010, , 35-66. |    | 0         |