
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4007430/publications.pdf Version: 2024-02-01

FRIC | RICNOT

#	Article	IF	CITATIONS
1	Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 2013, 7, 375-393.	1.5	1,455
2	A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 2012, 338, 1183-1189.	6.0	1,246
3	Changes in the Velocity Structure of the Greenland Ice Sheet. Science, 2006, 311, 986-990.	6.0	1,055
4	Ice-Shelf Melting Around Antarctica. Science, 2013, 341, 266-270.	6.0	986
5	Ice Flow of the Antarctic Ice Sheet. Science, 2011, 333, 1427-1430.	6.0	906
6	Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	870
7	Recent Antarctic ice mass loss from radarÂinterferometry and regional climateÂmodelling. Nature Geoscience, 2008, 1, 106-110.	5.4	819
8	Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 2018, 558, 219-222.	13.7	759
9	Partitioning Recent Greenland Mass Loss. Science, 2009, 326, 984-986.	6.0	755
10	Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1095-1103.	3.3	662
11	Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters, 2014, 41, 3502-3509.	1.5	621
12	Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophysical Research Letters, 2004, 31, .	1.5	546
13	Change detection techniques for ERS-1 SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31, 896-906.	2.7	537
14	BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 2017, 44, 11051-11061.	1.5	536
15	Rapid Bottom Melting Widespread near Antarctic Ice Sheet Grounding Lines. Science, 2002, 296, 2020-2023.	6.0	466
16	Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, 2003, 302, 434-437.	6.0	455
17	Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9239-9244.	3.3	452
18	Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 2020, 579, 233-239.	13.7	434

#	Article	IF	CITATIONS
19	Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 2020, 13, 132-137.	5.4	431
20	Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 A°C global warming could be dangerous. Atmospheric Chemistry and Physics, 2016, 16, 3761-3812.	1.9	421
21	Revisiting the Earth's sea-level and energy budgets from 1961 to 2008. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	415
22	Global sea-level budget 1993–present. Earth System Science Data, 2018, 10, 1551-1590.	3.7	409
23	Mass Balance of Polar Ice Sheets. Science, 2002, 297, 1502-1506.	6.0	406
24	Warm ocean is eroding West Antarctic Ice Sheet. Geophysical Research Letters, 2004, 31, .	1.5	371
25	Antarctic grounding line mapping from differential satellite radar interferometry. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	366
26	Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 2008, 35, .	1.5	344
27	A new bed elevation dataset for Greenland. Cryosphere, 2013, 7, 499-510.	1.5	341
28	Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geoscience, 2010, 3, 187-191.	5.4	338
29	Fast Recession of a West Antarctic Glacier. , 1998, 281, 549-551.		336
30	Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013. Geophysical Research Letters, 2014, 41, 1576-1584.	1.5	333
31	Accelerated Sea-Level Rise from West Antarctica. Science, 2004, 306, 255-258.	6.0	317
32	Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). Journal of Geophysical Research, 2012, 117, .	3.3	311
33	Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophysical Research Letters, 2004, 31, .	1.5	296
34	Spatial patterns of basal drag inferred using control methods from a full‣tokes and simpler models for Pine Island Glacier, West Antarctica. Geophysical Research Letters, 2010, 37, .	1.5	286
35	Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophysical Research Letters, 2001, 28, 3501-3504.	1.5	275
36	Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophysical Research Letters, 2012, 39, .	1.5	261

#	Article	IF	CITATIONS
37	Deeply incised submarine glacial valleys beneath the Greenland ice sheet. Nature Geoscience, 2014, 7, 418-422.	5.4	209
38	Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology, 2014, 60, 761-770.	1.1	208
39	Characteristics of ocean waters reaching Greenland's glaciers. Annals of Glaciology, 2012, 53, 202-210.	2.8	194
40	lce flow in Greenland for the International Polar Year 2008–2009. Geophysical Research Letters, 2012, 39, .	1.5	193
41	Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophysical Research Letters, 2008, 35, .	1.5	191
42	Comprehensive Annual Ice Sheet Velocity Mapping Using Landsat-8, Sentinel-1, and RADARSAT-2 Data. Remote Sensing, 2017, 9, 364.	1.8	181
43	Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 2012, 333-334, 293-303.	1.8	179
44	A mass conservation approach for mapping glacier ice thickness. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	170
45	Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data. Remote Sensing, 2012, 4, 2753-2767.	1.8	168
46	Fast retreat of Zachariæ IsstrÃ,m, northeast Greenland. Science, 2015, 350, 1357-1361.	6.0	158
47	Acceleration of Pine Island and Thwaites Glaciers, West Antarctica. Annals of Glaciology, 2002, 34, 189-194.	2.8	156
48	Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Followâ€On Missions. Geophysical Research Letters, 2020, 47, e2020GL087291.	1.5	155
49	Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters, 2017, 44, 6191-6199.	1.5	153
50	Observed latitudinal variations in erosion as a function of glacier dynamics. Nature, 2015, 526, 100-103.	13.7	151
51	Subaqueous melting of Store Glacier, west Greenland from threeâ€dimensional, highâ€resolution numerical modeling and ocean observations. Geophysical Research Letters, 2013, 40, 4648-4653.	1.5	146
52	Channelized bottom melting and stability of floating ice shelves. Geophysical Research Letters, 2008, 35, .	1.5	145
53	Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32, 1117-1124.	2.7	141
54	Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry. Journal of Glaciology, 1999, 45, 93-100.	1.1	141

#	Article	IF	CITATIONS
55	Undercutting of marineâ€ŧerminating glaciers in West Greenland. Geophysical Research Letters, 2015, 42, 5909-5917.	1.5	140
56	Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Annals of Glaciology, 2012, 53, 229-234.	2.8	138
57	Identification of sea ice types in spaceborne synthetic aperture radar data. Journal of Geophysical Research, 1992, 97, 2391-2402.	3.3	137
58	Mapping deforestation and secondary growth in Rondonia, Brazil, using imaging radar and thematic mapper data. Remote Sensing of Environment, 1997, 59, 167-179.	4.6	135
59	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	1.7	135
60	Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. Journal of Glaciology, 1996, 42, 476-485.	1.1	131
61	Monitoring freeze—thaw cycles along North—South Alaskan transects using ERS-1 SAR. Remote Sensing of Environment, 1994, 49, 131-137.	4.6	130
62	Sensitivity of the ice-shelf/ocean system to the sub-ice-shelf cavity shape measured by NASA IceBridge in Pine Island Glacier, West Antarctica. Annals of Glaciology, 2012, 53, 156-162.	2.8	130
63	The International Bathymetric Chart of the Arctic Ocean Version 4.0. Scientific Data, 2020, 7, 176.	2.4	129
64	Timing of Recent Accelerations of Pine Island Glacier, Antarctica. Geophysical Research Letters, 2003, 30, .	1.5	127
65	Challenges to Understanding the Dynamic Response of Greenland's Marine Terminating Glaciers to Oceanic and Atmospheric Forcing. Bulletin of the American Meteorological Society, 2013, 94, 1131-1144.	1.7	126
66	North and Northeast Greenland Ice Discharge from Satellite Radar Interferometry. Science, 1997, 276, 934-937.	6.0	122
67	Inversion of basal friction in Antarctica using exact and incomplete adjoints of a higherâ€order model. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1746-1753.	1.0	120
68	Segmentation of polarimetric synthetic aperture radar data. IEEE Transactions on Image Processing, 1992, 1, 281-300.	6.0	116
69	Dependence of century-scale projections of the Greenland ice sheet on its thermal regime. Journal of Glaciology, 2013, 59, 1024-1034.	1.1	111
70	Chapter 1 Impacts of the Oceans on Climate Change. Advances in Marine Biology, 2009, 56, 1-150.	0.7	110
71	Continentâ€Wide, Interferometric SAR Phase, Mapping of Antarctic Ice Velocity. Geophysical Research Letters, 2019, 46, 9710-9718.	1.5	110
72	Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica. Journal of Glaciology, 2001, 47, 213-222.	1.1	109

#	Article	IF	CITATIONS
73	Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Science Advances, 2019, 5, eaau3433.	4.7	109
74	Mass balance of East Antarctic glaciers and ice shelves from satellite data. Annals of Glaciology, 2002, 34, 217-227.	2.8	105
75	Spaceborne applications of P band imaging radars for measuring forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33, 1162-1169.	2.7	103
76	Ice flux divergence anomalies on 79north Glacier, Greenland. Geophysical Research Letters, 2011, 38, .	1.5	101
77	Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters, 2016, 43, 2659-2666.	1.5	99
78	Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nature Climate Change, 2015, 5, 51-55.	8.1	95
79	Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophysical Research Letters, 2014, 41, 8421-8428.	1.5	91
80	Unsupervised segmentation of polarimetric SAR data using the covariance matrix. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30, 697-705.	2.7	89
81	Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Annals of Glaciology, 2012, 53, 257-266.	2.8	89
82	Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 1637-1655.	1.6	88
83	Ocean forcing drives glacier retreat in Greenland. Science Advances, 2021, 7, .	4.7	86
84	Modeling of oceanâ€induced ice melt rates of five west Greenland glaciers over the past two decades. Geophysical Research Letters, 2016, 43, 6374-6382.	1.5	85
85	Ice flow dynamics of the Greenland Ice Sheet from SAR interferometry. Geophysical Research Letters, 1995, 22, 575-578.	1.5	84
86	A damage mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physicallyâ€based calving law. Geophysical Research Letters, 2012, 39, .	1.5	84
87	Rapid ice discharge from southeast Greenland glaciers. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	83
88	Hydrostatic grounding line parameterization in ice sheet models. Cryosphere, 2014, 8, 2075-2087.	1.5	83
89	Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method. Geophysical Research Letters, 2005, 32, .	1.5	81
90	Basal terraces on melting ice shelves. Geophysical Research Letters, 2014, 41, 5506-5513.	1.5	81

#	Article	IF	CITATIONS
91	Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	80
92	Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1025-1044.	1.0	79
93	Monitoring of environmental conditions in Taiga forests using ERS-1 SAR. Remote Sensing of Environment, 1994, 49, 145-154.	4.6	78
94	Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf. Cryosphere, 2013, 7, 1931-1947.	1.5	78
95	Quantifying mass balance processes on the Southern Patagonia Icefield. Cryosphere, 2015, 9, 25-35.	1.5	77
96	Observed thinning of Totten Glacier is linked to coastal polynya variability. Nature Communications, 2013, 4, 2857.	5.8	76
97	lce motion of the Patagonian Icefields of South America: 1984–2014. Geophysical Research Letters, 2015, 42, 1441-1449.	1.5	76
98	Oceans Melting Greenland: Early Results from NASA's Ocean-Ice Mission in Greenland. , 2016, 29, 72-83.		75
99	Contribution to the glaciology of northern Greenland from satellite radar interferometry. Journal of Geophysical Research, 2001, 106, 34007-34019.	3.3	74
100	Mapping of forest types in Alaskan boreal forests using SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32, 1051-1059.	2.7	73
101	Multifrequency polarimetric synthetic aperture radar observations of sea ice. Journal of Geophysical Research, 1991, 96, 20679-20698.	3.3	72
102	Ice-shelf changes in Pine Island Bay, Antarctica, 1947-2000. Journal of Glaciology, 2002, 48, 247-256.	1.1	71
103	Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophysical Research Letters, 2015, 42, 8049-8056.	1.5	71
104	Larsen B Ice Shelf rheology preceding its disintegration inferred by a control method. Geophysical Research Letters, 2007, 34, .	1.5	70
105	Roles of marine ice, rheology, and fracture in the flow and stability of the Brunt/Stancombâ€Wills Ice Shelf. Journal of Geophysical Research, 2009, 114, .	3.3	69
106	Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nature Communications, 2018, 9, 3403.	5.8	69
107	Substantial thinning of a major east Greenland outlet glacier. Geophysical Research Letters, 2000, 27, 1291-1294.	1.5	68
108	Getz Ice Shelf melting response to changes in ocean forcing. Journal of Geophysical Research: Oceans, 2013, 118, 4152-4168.	1.0	68

#	Article	IF	CITATIONS
109	Backscatter model for the unusual radar properties of the Greenland Ice Sheet. Journal of Geophysical Research, 1995, 100, 9389.	3.3	67
110	Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinelâ€la radar interferometry data. Geophysical Research Letters, 2016, 43, 8572-8579.	1.5	67
111	Winter Sea-ice mapping from multi-parameter synthetic-aperture radar data. Journal of Glaciology, 1994, 40, 31-45.	1.1	66
112	Ice-shelf dynamics near the front of the Filchner—Ronne Ice Shelf, Antarctica, revealed by SAR interferometry. Journal of Glaciology, 1998, 44, 405-418.	1.1	66
113	Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry. Journal of Glaciology, 1999, 45, 93-100.	1.1	66
114	Oceanâ€Induced Melt Triggers Glacier Retreat in Northwest Greenland. Geophysical Research Letters, 2018, 45, 8334-8342.	1.5	65
115	Evaluating the type and state of Alaska taiga forests with imaging radar for use in ecosystem models. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32, 353-370.	2.7	64
116	Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1002-1024.	1.0	63
117	Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophysical Research Letters, 2016, 43, 6366-6373.	1.5	63
118	Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data. Geophysical Research Letters, 2017, 44, 1360-1368.	1.5	63
119	Effect of Faraday rotation on L-band interferometric and polarimetric synthetic-aperture radar data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 383-390.	2.7	62
120	Sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions: a model study. Journal of Glaciology, 2002, 48, 552-558.	1.1	60
121	Interferometric radar observations of Glaciar San Rafael, Chile. Journal of Glaciology, 1996, 42, 279-291.	1.1	59
122	Winter and spring thaw as observed with imaging radar at BOREAS. Journal of Geophysical Research, 1997, 102, 29673-29684.	3.3	59
123	Force-perturbation analysis of Pine Island Glacier, Antarctica, suggests cause for recent acceleration. Annals of Glaciology, 2004, 39, 133-138.	2.8	59
124	Sensitivity of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years. Cryosphere, 2014, 8, 1699-1710.	1.5	58
125	A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophysical Research Letters, 2016, 43, 2027-2035.	1.5	58
126	Rapid submarine ice melting in the grounding zones of ice shelves in West Antarctica. Nature Communications, 2016, 7, 13243.	5.8	58

8

#	Article	IF	CITATIONS
127	Detection of Glacier Calving Margins with Convolutional Neural Networks: A Case Study. Remote Sensing, 2019, 11, 74.	1.8	56
128	Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophysical Research Letters, 2002, 29, 48-1.	1.5	55
129	Inferred basal friction and surface mass balance of the Northeast Greenland Ice Stream using data assimilation of ICESat (Ice Cloud and land Elevation Satellite) surface altimetry and ISSM (Ice Sheet) Tj ETQq1 1	0.78 4 314	rg B5 /Overlo
130	Unusual Radar Echoes from the Greenland Ice Sheet. Science, 1993, 261, 1710-1713.	6.0	54
131	Modelling of rift propagation on Ronne Ice Shelf, Antarctica, and sensitivity to climate change. Geophysical Research Letters, 2004, 31, .	1.5	54
132	Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture. Geophysical Research Letters, 2012, 39, .	1.5	53
133	Bathymetry data reveal glaciers vulnerable to iceâ€ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland. Geophysical Research Letters, 2016, 43, 2667-2674.	1.5	52
134	Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures. One Earth, 2020, 3, 691-703.	3.6	52
135	Ice flow sensitivity to geothermal heat flux of Pine Island Glacier, Antarctica. Journal of Geophysical Research, 2012, 117, .	3.3	51
136	Ice shelf basal melt rates around <scp>A</scp> ntarctica from simulations and observations. Journal of Geophysical Research: Oceans, 2016, 121, 1085-1109.	1.0	51
137	Vulnerability of Southeast Greenland Glaciers to Warm Atlantic Water From Operation IceBridge and Ocean Melting Greenland Data. Geophysical Research Letters, 2018, 45, 2688-2696.	1.5	51
138	Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century. Communications Earth & Environment, 2021, 2, .	2.6	51
139	Ice Sheets and Sea Level: Thinking Outside the Box. Surveys in Geophysics, 2011, 32, 495-505.	2.1	50
140	The Scientific Legacy of NASA's Operation IceBridge. Reviews of Geophysics, 2021, 59, e2020RG000712.	9.0	49
141	Ice-shelf dynamics near the front of the Filchner—Ronne Ice Shelf, Antarctica, revealed by SAR interferometry. Journal of Glaciology, 1998, 44, 405-418.	1.1	48
142	Observation of ocean tides below the Filchner and Ronne Ice Shelves, Antarctica, using synthetic aperture radar interferometry: Comparison with tide model predictions. Journal of Geophysical Research, 2000, 105, 19615-19630.	3.3	48
143	High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data. Journal of Glaciology, 2013, 59, 1015-1023.	1.1	47
144	Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters, 2017, 44, 4159-4167.	1.5	47

#	Article	IF	CITATIONS
145	Hinge-line migration of Petermann Gletscher, north Greenland, detected using satellite-radar interferometry. Journal of Glaciology, 1998, 44, 469-476.	1.1	46
146	Tidal flexure along ice-sheet margins: comparison of InSAR with an elastic-plate model. Annals of Glaciology, 2002, 34, 202-208.	2.8	46
147	Retreat of Glaciar Tyndall, Patagonia, over the last half-century. Journal of Glaciology, 2005, 51, 239-247.	1.1	46
148	Improved estimation of the mass balance of glaciers draining into the Amundsen Sea sector of West Antarctica from the CECS/NASA 2002 campaign. Annals of Glaciology, 2004, 39, 231-237.	2.8	44
149	Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula. Geophysical Research Letters, 2011, 38, .	1.5	42
150	Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009. Cryosphere, 2012, 6, 1019-1030.	1.5	42
151	Lowâ€frequency radar sounding of temperate ice masses in Southern Alaska. Geophysical Research Letters, 2013, 40, 5399-5405.	1.5	42
152	Pathways of ocean heat towards Pine Island and Thwaites grounding lines. Scientific Reports, 2019, 9, 16649.	1.6	42
153	A low-frequency ice-penetrating radar system adapted for use from an airplane: test results from Bering and Malaspina Glaciers, Alaska, USA. Annals of Glaciology, 2009, 50, 93-97.	2.8	41
154	Modeling the Response of Nioghalvfjerdsfjorden and Zachariae IsstrÃ,m Glaciers, Greenland, to Ocean Forcing Over the Next Century. Geophysical Research Letters, 2017, 44, 11,071.	1.5	41
155	Modeling the response of northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. Cryosphere, 2019, 13, 723-734.	1.5	41
156	Radar interferometry detection of hinge-line migration on Rutford Ice Stream and Carlson Inlet, Antarctica. Annals of Glaciology, 1998, 27, 25-32.	2.8	40
157	Ice-shelf dynamics near the front of the Filchner-Ronne Ice Shelf, Antaretica, revealed by SAR interferometry: model/interferogram comparison. Journal of Claciology, 1998, 44, 419-428.	1.1	40
158	Assessment of JERS-1 SAR for monitoring secondary vegetation in Amazonia: I. Spatial and temporal variability in backscatter across a chrono-sequence of secondary vegetation stands in Rondonia. International Journal of Remote Sensing, 2002, 23, 1357-1379.	1.3	39
159	Classification of boreal forest cover types using SAR images. Remote Sensing of Environment, 1997, 60, 270-281.	4.6	38
160	Recommendations for the collection and synthesis of Antarctic Ice Sheet mass balance data. Global and Planetary Change, 2004, 42, 1-15.	1.6	38
161	A modeling study of the effect of runoff variability on the effective pressure beneath Russell Clacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1834-1848.	1.0	38
162	Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019. Cryosphere, 2021, 15, 1663-1675.	1.5	38

#	Article	IF	CITATIONS
163	Polarization signatures of frozen and thawed forests of varying environmental state. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32, 371-381.	2.7	37
164	Ice-shelf dynamics near the front of the Filchner-Ronne Ice Shelf, Antaretica, revealed by SAR interferometry: model/interferogram comparison. Journal of Glaciology, 1998, 44, 419-428.	1.1	37
165	The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers. Earth and Planetary Science Letters, 2015, 419, 199-210.	1.8	37
166	Hinge-line migration of Petermann Gletscher, north Greenland, detected using satellite-radar interferometry. Journal of Glaciology, 1998, 44, 469-476.	1.1	36
167	Earth's water reservoirs in a changing climate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190458.	1.0	36
168	Context for the Recent Massive Petermann Glacier Calving Event. Eos, 2011, 92, 117-118.	0.1	35
169	Sensitivity Analysis of Pine Island Glacier ice flow using ISSM and DAKOTA. Journal of Geophysical Research, 2012, 117, .	3.3	35
170	Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015. Environmental Research Letters, 2017, 12, 024016.	2.2	35
171	Characterization of spatial statistics of distributed targets in SAR data. International Journal of Remote Sensing, 1993, 14, 345-363.	1.3	34
172	Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws. Cryosphere, 2018, 12, 3861-3876.	1.5	34
173	Ephemeral grounding as a signal of ice-shelf change. Journal of Glaciology, 2001, 47, 71-77.	1.1	33
174	On the Shortâ€ŧerm Grounding Zone Dynamics of Pine Island Glacier, West Antarctica, Observed With COSMO‣kyMed Interferometric Data. Geophysical Research Letters, 2017, 44, 10,436.	1.5	33
175	Observations and modeling of oceanâ€induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland. Geophysical Research Letters, 2017, 44, 8396-8403.	1.5	33
176	Segmentation of synthetic-aperture-radar complex data. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1991, 8, 1499.	0.8	32
177	Processes involved in the propagation of rifts near Hemmen Ice Rise, Ronne Ice Shelf, Antarctica. Journal of Glaciology, 2004, 50, 329-341.	1.1	32
178	The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica. Journal of Geophysical Research F: Earth Surface, 2014, 119, 588-602.	1.0	32
179	The Glacier and Land Ice Surface Topography Interferometer: An Airborne Proof-of-Concept Demonstration of High-Precision Ka-Band Single-Pass Elevation Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 827-842.	2.7	31
180	Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200. Journal of Glaciology, 2013, 59, 397-409.	1.1	31

#	Article	IF	CITATIONS
181	Amundsen and <scp>B</scp> ellingshausen <scp>S</scp> eas simulation with optimized ocean, sea ice, and thermodynamic ice shelf model parameters. Journal of Geophysical Research: Oceans, 2017, 122, 6180-6195.	1.0	31
182	Rapid glacier retreat rates observed in West Antarctica. Nature Geoscience, 2022, 15, 48-53.	5.4	31
183	Potential applications of polarimetry to the classification of sea ice. Geophysical Monograph Series, 1992, , 419-430.	0.1	30
184	Mapping of glacial motion and surface topography of Hielo Patagónico Norte, Chile, using satellite SAR L-band interferometry data. Annals of Glaciology, 1996, 23, 209-216.	2.8	30
185	Ocean melting of the Zachariae IsstrÃ,m and Nioghalvfjerdsfjorden glaciers, northeast Greenland. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
186	lce thickness of the northern half of the Patagonia Icefields of South America from highâ€resolution airborne gravity surveys. Geophysical Research Letters, 2016, 43, 241-249.	1.5	29
187	Bed elevation of Jakobshavn Isbrae, West Greenland, from high-resolution airborne gravity and other data. Geophysical Research Letters, 2017, 44, 3728-3736.	1.5	29
188	Iceberg calving of Thwaites Glacier, West Antarctica: full-Stokes modeling combined with linear elastic fracture mechanics. Cryosphere, 2017, 11, 1283-1296.	1.5	29
189	Ice volumetric changes on active volcanoes in southern Chile. Annals of Glaciology, 2006, 43, 111-122.	2.8	28
190	Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields. Geophysical Research Letters, 2019, 46, 6626-6635.	1.5	28
191	Grounding Line Retreat of Denman Glacier, East Antarctica, Measured With COSMOâ€6kyMed Radar Interferometry Data. Geophysical Research Letters, 2020, 47, e2019GL086291.	1.5	28
192	The International Bathymetric Chart of the Southern Ocean Version 2. Scientific Data, 2022, 9, .	2.4	28
193	High-resolution ice-thickness mapping in South Greenland. Annals of Glaciology, 2014, 55, 64-70.	2.8	27
194	Mass Loss of Totten and Moscow University Glaciers, East Antarctica, Using Regionally Optimized GRACE Mascons. Geophysical Research Letters, 2018, 45, 7010-7018.	1.5	27
195	Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry. Journal of Glaciology, 1996, 42, 476-485.	1.1	27
196	Designing the Climate Observing System of the Future. Earth's Future, 2018, 6, 80-102.	2.4	24
197	Maximum a posteriori classification of multifrequency, multilook, synthetic aperture radar intensity data. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 573.	0.8	23
198	Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions. Remote Sensing of Environment, 2018, 209, 166-180.	4.6	23

#	Article	IF	CITATIONS
199	Submarine landforms reveal varying rates and styles of deglaciation in North-West Greenland fjords. Marine Geology, 2018, 402, 60-80.	0.9	22
200	Bathymetry of Northwest Greenland Using "Ocean Melting Greenland―(OMG) High-Resolution Airborne Gravity and Other Data. Remote Sensing, 2019, 11, 131.	1.8	22
201	Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning. Scientific Reports, 2021, 11, 4992.	1.6	22
202	Coupling ice flow models of varying orders of complexity with the Tiling method. Journal of Glaciology, 2012, 58, 776-786.	1.1	21
203	Insights on the Surge Behavior of StorstrÃ,mmen and L. Bistrup Bræ, Northeast Greenland, Over the Last Century. Geophysical Research Letters, 2018, 45, 11,197.	1.5	20
204	Greenland Mass Trends From Airborne and Satellite Altimetry During 2011–2020. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	20
205	Monitoring Seasonal Variations in Boreal Ecosystems Using Multi-Temporal Spaceborne SAR Data. Canadian Journal of Remote Sensing, 1995, 21, 96-109.	1.1	19
206	Interferometric radar observations of Glaciares Europa and Penguin, Hielo Patagonico Sur, Chile. Journal of Glaciology, 1999, 45, 325-337.	1.1	19
207	Mass balance of the northeast sector of the Greenland ice sheet: a remote-sensing perspective. Journal of Glaciology, 2000, 46, 265-273.	1.1	19
208	Interferometric radar observations of Glaciares Europa and Penguin, Hielo Patagónico Sur, Chile. Journal of Glaciology, 1999, 45, 325-337.	1.1	18
209	"Crack!" in the polar night. Eos, 2001, 82, 497-497.	0.1	18
210	Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynl). Aerospace Conference Proceedings IEEE, 2008, , .	0.0	18
211	Intercomparison and Validation of SAR-Based Ice Velocity Measurement Techniques within the Greenland Ice Sheet CCI Project. Remote Sensing, 2018, 10, 929.	1.8	18
212	Interferometric radar observations of Glaciar San Rafael, Chile. Journal of Glaciology, 1996, 42, 279-291.	1.1	17
213	Spatial distribution of glacial erosion rates in the St. Elias range, Alaska, inferred from a realistic model of glacier dynamics. Journal of Geophysical Research, 2012, 117, .	3.3	17
214	Submarine Moraines in Southeast Greenland Fjords Reveal Contrasting Outletâ€Glacier Behavior since the Last Glacial Maximum. Geophysical Research Letters, 2019, 46, 3279-3286.	1.5	17
215	Low-frequency radar sounding of ice in East Antarctica and southern Greenland. Annals of Glaciology, 2014, 55, 138-146.	2.8	16
216	Physical processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16

#	Article	IF	CITATIONS
217	Mapping of glacial motion and surface topography of Hielo Patagónico Norte, Chile, using satellite SAR L-band interferometry data. Annals of Glaciology, 1996, 23, 209-216.	2.8	16
218	Assessment of JERS-1 SAR for monitoring secondary vegetation in Amazonia: II. Spatial, temporal, and radiometric considerations for operational monitoring. International Journal of Remote Sensing, 2002, 23, 1381-1399.	1.3	15
219	Dynamics and mass balance of Taylor Glacier, Antarctica: 1. Geometry and surface velocities. Journal of Geophysical Research, 2009, 114, .	3.3	15
220	Improving Bed Topography Mapping of Greenland Glaciers Using NASA's Oceans Melting Greenland (OMG) Data. , 2016, 29, 62-71.		15
221	Unsteady flow inferred for Thwaites Glacier, and comparison with Pine Island Glacier, West Antarctica. Journal of Glaciology, 2002, 48, 237-246.	1.1	14
222	Evaluation of Reconstructions of Snow/Ice Melt in Greenland by Regional Atmospheric Climate Models Using Laser Altimetry Data. Geophysical Research Letters, 2018, 45, 8324-8333.	1.5	14
223	Dual-frequency interferometric SAR observations of a tropical rain-forest. Geophysical Research Letters, 1996, 23, 993-996.	1.5	13
224	Two independent methods for mapping the grounding line of an outlet glacier – an example from the Astrolabe Glacier, Terre Adélie, Antarctica. Cryosphere, 2014, 8, 1331-1346.	1.5	13
225	A Century of Stability of Avannarleq and Kujalleq Glaciers, West Greenland, Explained Using Highâ€Resolution Airborne Gravity and Other Data. Geophysical Research Letters, 2018, 45, 3156-3163.	1.5	13
226	Simulating ice thickness and velocity evolution of Upernavik IsstrÃ,m 1849–2012 by forcing prescribed terminus positions in ISSM. Cryosphere, 2018, 12, 1511-1522.	1.5	13
227	Synthetic Aperture Radar Polarimetry Of Sea Ice. , 0, , .		12
228	Representation of sharp rifts and faults mechanics in modeling ice shelf flow dynamics: Application to Brunt/Stancombâ€Wills Ice Shelf, Antarctica. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1918-1935.	1.0	12
229	Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield. Journal of Claciology, 2018, 64, 568-582.	1.1	12
230	Bathymetry of Southeast Greenland From Oceans Melting Greenland (OMG) Data. Geophysical Research Letters, 2019, 46, 11197-11205.	1.5	12
231	Constraining an Ocean Model Under Getz Ice Shelf, Antarctica, Using A Gravityâ€Đerived Bathymetry. Geophysical Research Letters, 2020, 47, e2019GL086522.	1.5	12
232	Comparison of ice-shelf creep flow simulations with ice-front motion of Filchner-Ronne Ice Shelf, Antarctica, detected by SAR interferometry. Annals of Glaciology, 1998, 27, 182-186.	2.8	11
233	Retreat of Humboldt Gletscher, North Greenland, Driven by Undercutting From a Warmer Ocean. Geophysical Research Letters, 2021, 48, e2020GL091342.	1.5	10
234	Glacier wastage on southern Adelaide Island, Antarctica, and its impact on snow runway operations. Annals of Glaciology, 2005, 41, 57-62.	2.8	9

#	Article	IF	CITATIONS
235	Impact of Iceberg Calving on the Retreat of Thwaites Glacier, West Antarctica Over the Next Century With Different Calving Laws and Ocean Thermal Forcing. Geophysical Research Letters, 2019, 46, 14539-14547.	1.5	9
236	Boundary integral calculations of scattered fields: Application to a spacecraft launcher. Journal of the Acoustical Society of America, 1987, 82, 1771-1781.	0.5	8
237	Constraining ice dynamics at Dome C, Antarctica, using remotely sensed measurements. Geophysical Research Letters, 2000, 27, 3493-3496.	1.5	8
238	Technology Demonstration of Ka-band Digitally-Beam formed Radar for Ice Topography Mapping. , 2007, , .		8
239	Continued slowing of the Ross Ice Shelf and thickening of West Antarctic ice streams. Journal of Glaciology, 2013, 59, 838-844.	1.1	8
240	Evaluation of Regional Climate Models Using Regionally Optimized GRACE Mascons in the Amery and Getz Ice Shelves Basins, Antarctica. Geophysical Research Letters, 2019, 46, 13883-13891.	1.5	8
241	Direction Angle Sensitivity of Agricultural Field Backscatter with Airsar Data. , 0, , .		7
242	Plan for living on a restless planet sets NASA's solid Earth agenda. Eos, 2003, 84, 485.	0.1	7
243	Is Antarctica melting?. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 324-331.	3.6	6
244	On The Application Of Multifrequency Polarimetric Radar Observations To Sea-ice Classification. , 0, , .		5
245	Optimal numerical solvers for transient simulations of ice flow using the Ice Sheet System Model (ISSM versions 4.2.5 and 4.11). Geoscientific Model Development, 2017, 10, 155-168.	1.3	5
246	Status Of The Ice Classification Algorithm In The Alaska Sar Facility Geophysical Processor System. , 0, , .		4
247	A Bayes classifier for change detection in synthetic aperture radar imagery. , 1992, , .		4
248	Observed radar backscatter from forested areas with terrain variations. , 0, , .		4
249	Unsupervised Segmentation of Polarimetric Sar Data Using the Covariance Matrix. , 0, , .		3
250	Understanding sea level changes. , 0, , .		3
251	Polarization Signatures Of Frozen And Thawed Forests Of Varying Biomass. , 0, , .		3
252	Winter Sea-ice mapping from multi-parameter synthetic-aperture radar data. Journal of Glaciology, 1994, 40, 31-45.	1.1	3

#	Article	IF	CITATIONS
253	P-band radar mapping of forest biomass in boreal forests of interior Alaska. , 0, , .		3
254	Ice Mass Balance and Antarctic Gravity Change: Satellite and Terrestrial Perspectives. , 2005, , 3-12.		3
255	Introduction to the Special Issue on Ocean-Ice Interaction. , 2016, 29, 19-21.		3
256	Impact of Calving Dynamics on Kangilernata Sermia, Greenland. Geophysical Research Letters, 2020, 47, e2020GL088524.	1.5	3
257	Monitoring temporal change in Alaskan forests using airsar data. , 0, , .		2
258	SEGMENTATION OF SYNTHETIC APERTURE RADAR COMPLEX DATA. , 0, , .		2
259	Validation of Glacier Topographic Acquisitions from an Airborne Single-Pass Interferometer. Sensors, 2019, 19, 3700.	2.1	2
260	Ice Sheets and Sea Level: Thinking Outside the Box. Space Sciences Series of ISSI, 2011, , 495-505.	0.0	2
261	StorstrÃ,mmen and L. Bistrup Bræ, North Greenland, Protected From Warm Atlantic Ocean Waters. Geophysical Research Letters, 2022, 49, .	1.5	2
262	Monitoring seasonal change in taiga forests using ERS-1 SAR data. , 0, , .		1
263	Monitoring freeze-thaw along north-south Alaskan transects using ERS-1 SAR. , 0, , .		1
264	Monitoring of freeze/thaw transitions in taiga forests using ERS-1 SAR. , 0, , .		1
265	Characterization of canopy physiology at BOREAS with SAR. , 0, , .		1
266	Monitoring, classification, and characterization of interior Alaska forests using AIRSAR and ERS-1 SAR. Polar Record, 1995, 31, 227-234.	0.4	1
267	Interferometric radar observations of Glaciares Europa and Penguin, Hielo Patagónico Sur, Chile. Journal of Glaciology, 1999, 45, 325-337.	1.1	1
268	Classification of Multifrequency Multilook Synthetic Aperture Radar Data. , 0, , .		0
269	Effect Of Speckle On The Hh-vv Statistics. , 0, , .		0
270	Segmentation of multifrequency SAR complex data. , 1991, , .		0

#	Article	IF	CITATIONS
271	An ecological approach to radar mapping of biomass in interior Alaska boreal forests. , 0, , .		Ο
272	Inference of forest biomass using P-band circular-polarized radar signals. , 0, , .		0
273	Influence of Ocean Warming on Glaciers and Ice Streams. , 0, , 136-137.		0
274	The Patagonian ice fields: An updated assessment of sea level contribution. IOP Conference Series: Earth and Environmental Science, 2009, 6, 012006.	0.2	0
275	Geophysical Research Letters: New Policies Improve Top-Cited Geosciences Journal. Eos, 2010, 91, 337-337.	0.1	0
276	Antarctic ICE sheet grounding line migration monitoring using COSMO-SkyMed very short repeat-time SAR interferometry. , 2017, , .		0
277	Thank You to Our 2020 Reviewers. Perspectives of Earth and Space Scientists, 2021, 2, .	0.2	0
278	Cryosphere Sciences with NISAR. , 2021, , .		0
279	Ice Sheet Mass Balance. Encyclopedia of Earth Sciences Series, 2011, , 608-612.	0.1	Ο