Philip H Elsinga

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4007146/publications.pdf
Version: 2024-02-01

1	Improved Staging of Patients With Carcinoid and Islet Cell Tumors With ¹⁸ F-Dihydroxy-Phenyl-Alanine and ¹¹C-5-Hydroxy-Tryptophan Positron Emission Tomography. Journal of Clinical Oncology, 2008, 26, 1489-1495.	0.8	240
2	Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncology, The, 2006, 7, 728-734.	5.1	234
3	Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. Journal of Nuclear Medicine, 2003, 44, 331-5.	2.8	201
4	Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. Journal of Nuclear Medicine, 2004, 45, 695-700.	2.8	189
5	PET Studies on P-Glycoprotein Function in the Blood-Brain Barrier: How it Affects Uptake and Binding of Drugs within the CNS. Current Pharmaceutical Design, 2004, 10, 1493-1503.	0.9	159
6	6-[F-18]Fluoro-<scp>\|</scp>-Dihydroxyphenylalanine Positron Emission Tomography Is Superior to Conventional Imaging with 1231-Metaiodobenzylguanidine Scintigraphy, Computer Tomography, and Magnetic Resonance Imaging in Localizing Tumors Causing Catecholamine Excess. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3922-3930.	1.8	153
7	Phosphoramidite accelerated copper(i)-catalyzed [3+2] cycloadditions of azides and alkynes. Chemical Communications, 2009, , 2139.	2.2	149

8 PET Tracers for Imaging of the Dopaminergic System. Current Medicinal Chemistry, 2006, 13, 2139-2153.
Molecular imaging in neuroendocrine tumors: Molecular uptake mechanisms and clinical results.
Critical Reviews in Oncology/Hematology, 2009, 71, 199-213.

10	Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2703-2714.	1.4	127
11	Guidance on current good radiopharmacy practice (CGRPP) for the small-scale preparation of radiopharmaceuticals. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1049-1062.	3.3	113

12	Strainâ€Promoted Copperâ€Free â€œClickâ€•Chemistry for ¹⁸F Radiolabeling of Bombesin. Angewandte Chemie - International Edition, 2011, 50, 11117-11120.	7.2	113
13	Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. Journal of Nuclear Medicine, 2005, 46, 400-4.	2.8	108

14 Fully automated synthesis module for the high yield one-pot preparation of 6-[]fluoro-l-DOPA. Applied

Syntiesis and Evaluation of (S)-4-(3-(za€-[11C]isopropyamino)-2-nyaroxypropoxy)-zr-oenzimiaazol-z-one
$10(\mathrm{~S})-[11 \mathrm{C}] \mathrm{CGP}$ 12388) and
19 (S)-4-(3-((1â€~-[18F]Fluoroisopropyl)amino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)-[18F]Fluoro-CGP) Tj ETQq1 10.784314 r

20 The cholinergic system, sigma-1 receptors and cognition. Behavioural Brain Research, 2011, 221, 543-554.
1.2

78
18F-FLT PET for visualization of laryngeal cancer: comparison with $18 F-F D G$ PET. Journal of Nuclear
Medicine, 2004, 45, 226-31.

22 Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation.
Journal of Nuclear Medicine, 2006, 47, 150-4.
2.8

70
Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective.
23 International Journal of Molecular Sciences, 2020, 21, 5291.
$1.8 \quad 66$
International Journal of Molecular Sciences, 2020, 21, 5291.

Probes for Non-invasive Matrix Metalloproteinase-targeted Imaging with PET and SPECT. Current
Pharmaceutical Design, 2013, 19, 4647-4672.
0.9

65

$25 \quad$| Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Crossâ€Coupling of Organolithium |
| :--- |
| Reagents. Angewandte Chemie - International Edition, 2017, 56, 3354-3359. |

26

3'-18F-fluoro-3'-deoxy-L-thymidine: a new tracer for staging metastatic melanoma?. Journal of Nuclear Medicine, 2003, 44, 1927-32.
2.8

61

In Vivo Biodistribution of No-Carrier-Added 6-18F-Fluoro-3,4-Dihydroxy-I-Phenylalanine (18F-DOPA),
27 Produced by a New Nucleophilic Substitution Approach, Compared with Carrier-Added 18F-DOPA,
$2.8 \quad 60$
Prepared by Conventional Electrophilic Substitution. Journal of Nuclear Medicine, 2015, 56, 106-112.

28 Imaging the Folate Receptor on Cancer Cells with ^{99m}Tc-Etarfolatide: Properties, Clinical Use, and Future Potential of Folate Receptor Imaging. Journal of Nuclear Medicine, 2014, 55, 701-704.
2.8

59

29 Radiopharmaceutical chemistry for positron emission tomography. Methods, 2002, 27, 208-217.
1.9

58

30 Proliferation Markers for the Differential Diagnosis of Tumor and Inflammation. Current
Pharmaceutical Design, 2008, 14, 3326-3339.
0.9

58

31 Guideline on current good radiopharmacy practice (cGRPP) for the small-scale preparation of
radiopharmaceuticals. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 8.

EANM guideline on the validation of analytical methods for radiopharmaceuticals. EJNMMI
Radiopharmacy and Chemistry, 2020, 5, 7.
1.8

57

Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active
1.5

55
$33 \begin{aligned} & \text { Pridopidine selectively occupies sigma-1 rather than don } \\ & \text { doses. Psychopharmacology, 2015, 232, 3443-3453. }\end{aligned}$

Synthesis and evaluation of 11C- and 18F-labeled
34 1-[2-(4-alkoxy-3-methoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazines as sigma receptor ligands for
positron emission tomography studies. Nuclear Medicine and Biology, 2003, 30, 273-284.

Manipulation of [11C]-5-Hydroxytryptophan and 6-[18F]Fluoro-3,4-Dihydroxy-I-Phenylalanine
Accumulation in Neuroendocrine Tumor Cells. Cancer Research, 2008, 68, 7183-7190.
0.4

54
Guidance on current good radiopharmacy practice for the smallâ€scale preparation of43 radiopharmaceuticals using automated modules: a European perspective. Journal of Labelled0.5Compounds and Radiopharmaceuticals, 2014, 57, 615-620.44 Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positronemission tomography. Journal of Controlled Release, 2020, 324, 303-316.
45 Effect of fenfluramine-induced increases in serotonin release on [18F]MPPF binding: A continuous
Quantitative imaging of 5-HT1A receptor binding in healthy volunteers with [18f]p-MPPF. Nuclear Medicine and Biology, 2000, 27, 473-476.
0.3

Agonist high- and low-affinity states of dopamine D2 receptors: methods of detection and clinical

	e
5	logs
	Emission Tomography Journal of Medicinal Chemistry, 2014, 57, 6765-6780.

Synthesis and Preclinical Evaluation of
58 2-(2-Furanyl)-7-[2-[4-[4-(2-[¹¹C]methoxyethoxy)phenyl]-1-piperazinyl]ethyl]7<i>H</i>-pyrazolo[4,3-<i>2.9</i>][1,2,4]triazol ([¹¹C]Preladenant) as a PET Tracer for the Imaging of Cerebral Adenosine A_{2A}
Receptors. Journal of Medicinal Chemistry, 2014, 57, 9204-9210.
59 Evaluation of [¹⁸F]MC225 as a PET radiotracer for measuring P-glycoprotein function at
$2.4 \quad 29$ and Metabolism, 2017, 37, 1286-1298.
$60 \quad(\mathrm{~S}, \mathrm{~S})$ - and (S,R)-1 $1 \not \epsilon^{2}$-[18F]fluorocarazolol, ligands for the visualization of pulmonary $\hat{\imath}$ 2-adrenergic
0.5

28
Synthesis and preliminary evaluation of
62
(R,S)-1-[2-((Carbamoyl-4-hydroxy)phenoxy)-ethylamino]-3-[4-(1-[11C]-methyl-4-trifluoromethyl-2-imidazolyl)phenoxy]-2-propapol
([11C]CGP 20712A) as a selective $\hat{I}^{2} 1$-adrenoceptor ligand for PET. Nuclear Medicine and Biology, 1994, 21, 211-217

63 Evaluation of [11C]SA5845 and [11C]SA4503 for imaging of sigma receptors in tumors by animal PET.
63 Annals of Nuclear Medicine, 2005, 19, 701-709.
$1.2 \quad 27$

Synthesis and Evaluation of [18F]-FEAnGA as a PET Tracer for ${ }^{12}$-Glucuronidase Activity. Bioconjugate Chemistry, 2010, 21, 911-920.
$1.8 \quad 27$

Effect of radiotherapy and chemotherapy on bone marrow activity. Nuclear Medicine

65 Communications, 2011, 32, 17-22.
$0.5 \quad 27$

Dose-dependent sigma-1 receptor occupancy by donepezil in rat brain can be assessed with 11C-SA4503 and microPET. Psychopharmacology, 2014, 231, 3997-4006.
1.5
Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388.
Journal of Nuclear Medicine, 2004, 45, 471-7.
¹⁸F-FEAnGA for PET of 1 2-Glucuronidase Activity in Neuroinflammation. Journal of Nuclear

PET Tracers for Imaging of ABC Transporters at the Blood-Brain Barrier: Principles and Strategies.
73 Current Pharmaceutical Design, 2016, 22, $5779-5785$.

Synthesis and Preclinical Evaluation of Three Novel Fluorine-18 Labeled Radiopharmaceuticals for P-Glycoprotein PET Imaging at the Bloodâ $€^{\prime B}$ Brain Barrier. Molecular Pharmaceutics, 2015, 12, 2265-2275.
2.3

Initial Evaluation of an Adenosine $A<s u b>2 A</ s u b$ > Receptor Ligand, ¹¹C-Preladenant, in Healthy Human Subjects. Journal of Nuclear Medicine, 2017, 58, 1464-1470.

Synthesis and evaluation of 1 â $€^{2-[18 F] f l u o r o m e t o p r o l o l ~ a s ~ a ~ p o t e n t i a l ~ t r a c e r ~ f o r ~ t h e ~ v i s u a l i z a t i o n ~ o f ~}$ 1̂2-adrenoceptors with PET. Nuclear Medicine and Biology, 1993, 20, 637-642.
0.3

Hunting for the highâ€affinity state of Gâ€proteinâ€coupled receptors with agonist tracers: Theoretical
77 and practical considerations for positron emission tomography imaging. Medicinal Research Reviews,
$5.0 \quad 22$ 2019, 39, 1014-1052.

Ultrafast Photoclick Reaction for Selective ¹⁸F-Positron Emission Tomography Tracer Synthesis in Flow. Journal of the American Chemical Society, 2021, 143, 10041-10047.

Carbon-11 Labeled Tracers for In Vivo Imaging of P-Glycoprotein Function: Kinetics, Advantages and
Disadvantages. Current Topics in Medicinal Chemistry, 2010, 10, 1820-1833.
1.0

P-glycoprotein Function in the Rodent Brain Displays a Daily Rhythm, a Quantitative In Vivo PET Study.
AAPS Journal, 2016, 18, 1524-1531.

Production of â€œbiobetterâ€•glucarpidase variants to improve drug detoxification and antibody directed
81 enzyme prodrug therapy for cancer treatment. European Journal of Pharmaceutical Sciences, 2019, 127, 79-91.

Evaluation of fluorine-18-labeled alkylating agents as potential synthons for the labeling of
0.7

20

[^0]> 83 Synthesis and evaluation of a fluorine-18 labeled antisense oligonucleotide as a potential PET tracer for iNOS mRNA expression. Nuclear Medicine and Biology, 2004, 31, 605-612.

Rapid Reduction of Âl-Receptor Binding and 18F-FDG Uptake in Rat Gliomas After In Vivo Treatment with
2.8

20

Application of 99mTechnetium-HYNIC(tricine/TPPTS)-Aca-Bombesin(7-14) SPECT/CT in prostate cancer patients. Nuclear Medicine and Biology, 2013, 40, 933-938.
0.3

20
[¹⁸F]Fluoroethoxybenzovesamicol in Parkinson's disease patients: Quantification of a novel cholinergic positron emission tomography tracer. Movement Disorders, 2019, 34, 924-926.
2.2

20

Synthesis and evaluation of dopamine D3 receptor antagonist 11C-GR218231 as PET tracer for
2.8

20
In vivo evaluation of $[\langle$ sup >11 </sup>C] preladenant positron emission tomography for quantification
of adenosine $A<$ sub $\rangle 2 A</$ sub $>$ receptors in the rat brain. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 577-589.

92 In Vivo Evaluation of ¹¹C-Preladenant for PET Imaging of Adenosine A_{2A} Receptors in the Conscious Monkey. Journal of Nuclear Medicine, 2017, 58, 762-767.
2.8

19

93 In vitro imaging of bacteria using 18F-fluorodeoxyglucose micro positron emission tomograph
1.6 Scientific Reports, 2017, 7, 4973.

19

94 Despite irreversible binding, PET tracer [11C]-SA5845 is suitable for imaging of drug competition at sigma receptorsâ€"The cases of ketamine and haloperidol. Neurochemistry International, 2008, 53, 45-50.
1.9

Preclinical Evaluation and Quantification of $18 F$-Fluoroethyl and $18 F$-Fluoropropyl Analogs of
95 SCH442416 as Radioligands for PET Imaging of the Adenosine A2A Receptor in Rat Brain. Journal of
$2.8 \quad 18$
Nuclear Medicine, 2017, 58, 466-472.

96 Visualization of ${ }^{2}$ 2-Adrenoceptors Using PET. Molecular Imaging and Biology, 1998, 1, 81-94.
0.3

17
Positron Emission Tomography Studies of Human Airways Using an Inhaled ${ }^{2}$ 2-Adrenoceptor Antagonist,
S-11 C-CGP 12388. Chest, 2005, 128, 3020-3027.
Allosteric Interactions between Adenosine A2A and Dopamine D2 Receptors in Heteromeric Complexes:
100 Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. International
1.8
17
Journal of Molecular Sciences, 2021, 22, 1719.

101 Use of ¹¹ C-MPDX and PET to Study Adenosine A₁ Receptor Occupancy by
Nonradioactive Agonists and Antagonists. Journal of Nuclear Medicine, 2014, 55, 315-320.
Synthesis of [18F]RGD-K5 by catalyzed [3+2] cycloaddition for imaging integrin $\hat{1} \pm \mathrm{v} \hat{2} 3$ expression in vivo.
102 Nuclear Medicine and Biology, 2013, 40, 710-716.
0.3

15

103 Radiation Dosimetry of a Novel Adenosine A2A Receptor Radioligand [11C]Preladenant Based on PET/CT
103 Imaging and Ex Vivo Biodistribution in Rats. Molecular Imaging and Biology, 2017, 19, 289-297.

Late-Stage Copper-Catalyzed Radiofluorination of an Arylboronic Ester Derivative of Atorvastatin.
104 Molecules, 2019, 24, 4210.
1.7

15

Multimerization Improves Targeting of Peptide Radio-Pharmaceuticals. Current Pharmaceutical Design,
0.9

15
105 2012,18, 2501-2516.

Induction of $\hat{2}$-Glucuronidase Release by Cytostatic Agents in Small Tumors. Molecular Pharmaceutics,
2012, 9, 3277-3285.
2.3

14
109

> Pharmacokinetic Modeling of [18F]MC225 for Quantification of the P-Clycoprotein Function at the
> Bloodâ€"Brain Barrier in Non-Human Primates with PET. Molecular Pharmaceutics, 2020, 17, 3477-3486.
2.3

14

Multivalent Probes in Molecular Imaging: Reality or Future?. Trends in Molecular Medicine, 2021, 27,
3.5

14
.

110 379-393.

Modular Medical Imaging Agents Based on Azideâ€"Alkyne Huisgen Cycloadditions: Synthesis and
111 Preâ€Clinical Evaluation of <sup> 18</sup > Fâ€Łabeled PSMAâ€ Tracers for Prostate Cancer Imaging. Chemistry 1.713 - A European Journal, 2020, 26, 10871-10881.

Synthesis and Characterization of a Novel Series of Agonist Compounds as Potential

112	Radiopharmaceuticals for Imaging Dopamine D_{2/3} Receptors in Their High-Affinity State.
Journal of Medicinal Chemistry, 2014, 57, 391-410.	

113 Synthesis of $6 \hat{1} \pm-[18 F]$ Fluoroprogesterone: A first step towards a potential receptor-ligand for PET.
$0.7 \quad 11$
Applied Radiation and Isotopes, 1994, 45, 811-813.

Sigma-1 Agonist Binding in the Aging Rat Brain: a MicroPET Study with [11C]SA4503. Molecular Imaging and Biology, 2016, 18, 588-597.
1.3
<i>In Vivo</i> Induction of P-Glycoprotein Function can be Measured with [¹⁸F]MC225 and
PET. Molecular Pharmaceutics, 2021, 18, 3073-3085.
2.3

11

116 Small Molecule PET-Radiopharmaceuticals. Current Pharmaceutical Design, 2014, 20, 2268-2274.

0.9

11
New Imaging Tracers for the Infected Diabetic Foot (Nuclear and Optical Imaging). Current
Pharmaceutical Design, 2018, 24, 1287-1303.
Pharmaceutical Design, 2018, 24, 1287-1303.
$0.9 \quad 11$

EANM guideline on quality risk management for radiopharmaceuticals. European Journal of Nuclear
118 Medicine and Molecular Imaging, 2022, 49, 3353-3364.
3.3

11
119 Potential PET tracers for imaging of tumor-associated macrophages. EJNMMI Radiopharmacy and
Chemistry, 2022, 7, 11.
1.8

11

120 Asymmetric Synthesis of Carbon-11 Labelled \&\#945;-Amino Acids for PET. Current Organic
Chemistry, 2013, 17, 2127-2137.
0.9

10

121 Robotic synthesis of I-[1-11C]tyrosine. Applied Radiation and Isotopes, 1994, 45, 821-828.
$0.7 \quad 9$
In Vivo Evaluation of
1-O-(4-(2-Fluoroethyl-Carbamoyloxymethyl)-2-Nitrophenyl)-O-1̂2-D-Clucopyronuronate: A Positron
Emission Tomographic Tracer for lmaging [2-Glucuronidase Activity in a Tumor/Inflammation Rodent
$0.7 \quad 9$ Model. Molecular Imaging, 2012, 11, 7290.2011.00029.

123 Tailored imaging of islet cell tumors of the pancreas amidst increasing options. Critical Reviews in Oncology/Hematology, 2012, 82, 213-226.
$2.0 \quad 9$

Synthesis and preliminary evaluation of (S)-[11C]-exaprolol, a novel $\hat{\imath}$-adrenoceptor ligand for PET.
Neurochemistry International, 2008, 52, 729-733.

Synthesis and Evaluation of New Fluorine-18 Labeled Verapamil Analogs To Investigate the Function of P-Glycoprotein in the Bloodâ€"Brain Barrier. ACS Chemical Neuroscience, 2017, 8, 1925-1936.

Testâ€"Retest Repeatability of [18F]MC225-PET in Rodents: A Tracer for Imaging of P-gp Function. ACS Chemical Neuroscience, 2020, 11, 648-658.
[¹⁸F]Atorvastatin Pharmacokinetics and Biodistribution in Healthy Female and Male Rats.
Molecular Pharmaceutics, 2021, 18, 3378-3386.

Synthesis of [11C]methyl magnesium iodide and its application to the introduction of [11C]-N-tert-butyl groups and [11C]-sec-alcohols. Applied Radiation and Isotopes, 1995, 46, 227-231.

Growth Factor/Peptide Receptor Imaging for the Development of Targeted Therapy in Oncology. Current Pharmaceutical Design, 2008, 14, 3340-3347.

In vivo evaluation of [18F]FEAnGA-Me: a PET tracer for imaging ${ }^{2}$-glucuronidase (${ }^{2}$-GUS) activity in a tumor/inflammation rodent model. Nuclear Medicine and Biology, 2012, 39, 854-863.
$0.3 \quad 7$

In Vivo Responses of Human A375M Melanoma to a Ïf Ligand: 18F-FDG PET Imaging. Journal of Nuclear Medicine, 2013, 54, 1613-1620.

Novel Approach to Repeated Arterial Blood Sampling in Small Animal PET: Application in a Test-Retest
135 Study with the Adenosine A1 Receptor Ligand [11C]MPDX. Molecular Imaging and Biology, 2016, 18, 715-723.

Improving metabolic stability of fluorine-18 labeled verapamil analogs. Nuclear Medicine and Biology, 2018, 64-65, 47-56.

Evaluation of P-glycoprotein function at the bloodâ€"brain barrier using [18F]MC225-PET. European
137 Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4105-4106.

Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy.
Biomedicine and Pharmacotherapy, 2021, 144, 112260.
Synthesis and Evaluation of 18F-Enzalutamide, a New Radioligand for PET Imaging of Androgen
139 Receptors: A Comparison with 16|²-18F-Fluoro-5 $\mathbf{I} \pm$ Dihydrotestosterone. Journal of Nuclear Medicine, 2021, 62, 1140-1145.

140 Dose-response assessment of cerebral P-glycoprotein inhibition in vivo with [18F]MC225 and PET. Journal of Controlled Release, 2022, 347, 500-507.
4.8

7

Synthesis and Evaluation in Rats of the Dopamine D2/3 Receptor Agonist 18F-AMC20 as a Potential Radioligand for PET. Journal of Nuclear Medicine, 2015, 56, 133-139.
¹¹Câ€•and ¹⁸Fâ€kabeled Radioligands for Pâ€Glycoprotein Imaging by Positron Emission Tomography. ChemMedChem, 2016, 11, 108-118.
1.6

Synthesis of Substituted Benzaldehydes via a Two-Step, One-Pot Reduction/Cross-Coupling Procedure.
Organic Letters, 2019, 21, 4087-4091.
2.4

Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for 2021, 48, 4307-4317.
145 Trends on the Role of PET in Drug Development. , 2012, , .6
MicroPET Evaluation of a Hydroxamate-Based MMP Inhibitor, [18F]FB-ML5, in a Mouse Model of
Cigarette Smoke-Induced Acute Airway Inflammation. Molecular Imaging and Biology, 2015, 17, 680-687. 1.3

5Correspondence re: H. Barthel et al., 3'-deoxy-3'-[(18)F]fluorothymidine as a new marker for
147 monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. $0.4 \quad 5$Cancer Res., 63: 3791-3798, 2003. Cancer Research, 2003, 63, 8558-9; author reply 8560.Expression of CD39 Identifies Activated Intratumoral CD8+ T Cells in Mismatch Repair Deficient1.7Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors. EJNMMIResearch, 2014, 4, 53.
Structure-activity relationship study towards non-peptidic positron emission tomography (PET)
$150 \quad$ radiotracer for gastrin releasing peptide receptors: Development of [18F]
(S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy)pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido] propionamide.
Bioorganic and Medicinal Chemistry, 2017, 25, 277-292
151 Nomenclature for radiopharmaceuticals, consultation of your opinion!. EJNMMI Radiopharmacy and
<i>In vitro</i>studies on CNGRC-CPG2 fusion proteins for ligand-directed enzyme prodrug therapy for targeted cancer therapy. Oncotarget, 2020, 11, 619-633.
cerebral beta-adrenoceptors. Nuclear Medicine and Biology, 2014, 41, 203-209.
0.3

3

> [18F]Atorvastatin: synthesis of a potential molecular imaging tool for the assessment of statin-related mechanisms of action. EJNMMI Research, 2020, 10, 34.
1.1

3

Synthesis and Evaluation of [18F]FEtLos and [18F]AMBF3Los as Novel 18F-Labelled Losartan Derivatives
156 for Molecular Imaging of Angiotensin II Type 1 Receptors. Molecules, 2020, 25, 1872.
1.7

3

157 Mapping Arginase Expression with ¹⁸ F-Fluorinated Late-Generation Arginase Inhibitors
Derived from Quaternary $\mathfrak{I} \pm$-Amino Acids. Journal of Nuclear Medicine, 2021, 62, 1163-1170.

Pharmacokinetic Modeling of (<i>R<|i>)-[¹¹C]verapamil to Measure the P-Glycoprotein
2.3

3 Function in Nonhuman Primates. Molecular Pharmaceutics, 2021, 18, 416-428.

PET Imaging of Adenosine $A<s u b>1</ s u b>$ Receptor Occupancy. Journal of Nuclear Medicine, 2014, 55, 1918-1918.

Endorsement of International Consensus Radiochemistry Nomenclature Guidelines. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1399-1399.

Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 13.

165	Production of Long-Acting CNGRCâ€"CPG2 Fusion Proteins: New Derivatives to Overcome Drug Immunogenicity of Ligand-Directed Enzyme Prodrug Therapy for Targeted Cancer Treatment. Technology in Cancer Research and Treatment, 2021, 20, 153303382110573.	0.8	1
166	Pharmacokinetic Modeling of [¹¹C]CSK-189254, PET Tracer Targeting H₃ Receptors, in Rat Brain. Molecular Pharmaceutics, 2022, 19, 918-928.	2.3	1
167	A proof-of-concept study on the use of a fluorescein-based 18 F-tracer for pretargeted PET. EJNMMI Radiopharmacy and Chemistry, 2022, 7, 3.	1.8	1
168	Obituary \| Nuclear Medicine and Biology - Volume 36, Issue 2. Nuclear Medicine and Biology, 2009, 36, 233-234.	0.3	0
169	Ex Vivo Characterization of a Novel lodine-123-Labelled Aminomethylchroman as a Potential Agonist Ligand for SPECT Imaging of Dopamine D2/3 Receptors. International Journal of Molecular Imaging, 2014, 2014, 1-10.	1.3	0

170 Endorsement of International Consensus Radiochemistry Nomenclature Guidelines. EJNMMI Physics, 2019, 6, 6.
1.30

171	Endorsement of International Consensus Radiochemistry Nomenclature Guidelines. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 8.	1.8	0
172	Endorsement of International Consensus Radiochemistry Nomenclature Guidelines. EJNMMI Research, 2019, 9, 34.	1.1	O
173	Endorsement of International Consensus Radiochemistry Nomenclature Guidelines. European Journal of Hybrid Imaging, 2019, 3, 6.	0.6	0
174	A new approach to produce [18F]MC225 via one-step synthesis, a PET radiotracer for measuring P-gp function. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 24.	1.8	O
175	The effects of molar activity on [18F]FDOPA uptake in patients with neuroendocrine tumors. EJNMMI Research, 2021, 11, 88.	1.1	0

Testâ $€$ "retest reproducibility of cerebral adenosine A2A receptor quantification using [11C]preladenant.
1.2

0
Annals of Nuclear Medicine, 2022, 36, 15-23.

Binding of the Dual-Action Anti-Parkinsonian Drug AG-0029 to Dopamine $\mathrm{D}<$ sub $>2</$ sub $>$ and Histamine
$\mathrm{H}<$ sub $>3</$ sub $>$ Receptors: A PET Study in Healthy Rats. Molecular Pharmaceutics, 0, ,
2.3

0

[^0]: oligonucleotides. Applied Radiation and Isotopes, 2003, 58, 469-476.
 82

