Chun-Xia Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4007121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoemulsions for drug delivery. Particuology, 2022, 64, 85-97.	2.0	104
2	Templating core–shell particles using metal ion-chelating biosurfactants. Particuology, 2022, 64, 145-152.	2.0	2
3	Computational investigation of metal organic frameworks as potential drug carriers for antihypertensive amlodipine. AICHE Journal, 2022, 68, e17474.	1.8	3
4	Influence of nanoparticle mechanical property on protein corona formation. Journal of Colloid and Interface Science, 2022, 606, 1737-1744.	5.0	19
5	Lipid Nanoparticles for Drug Delivery. Advanced NanoBiomed Research, 2022, 2, 2100109.	1.7	129
6	Morphology control of trimer particles via one-step co-precipitation and controlled phase separation. Chemical Engineering Science, 2022, 251, 117432.	1.9	5
7	Orthogonal Multiplexed NIR-II Imaging with Excitation-Selective Lanthanide-Based Nanoparticles. Analytical Chemistry, 2022, 94, 3661-3668.	3.2	14
8	Biophysical properties of hydrogels for mimicking tumor extracellular matrix. , 2022, 136, 212782.		7
9	Microfluidic Nanoparticles for Drug Delivery. Small, 2022, 18, e2106580.	5.2	58
10	Bioinspired core-shell silica nanoparticles monitoring extra- and intra-cellular drug release. Journal of Colloid and Interface Science, 2022, 624, 242-250.	5.0	4
11	Alginate Particles for Enzyme Immobilization Using Spray Drying. Journal of Agricultural and Food Chemistry, 2022, 70, 7139-7147.	2.4	12
12	Nanocarrier-Based Tumor-Targeting Drug Delivery Systems for Hepatocellular Carcinoma Treatments: Enhanced Therapeutic Efficacy and Reduced Drug Toxicity. Journal of Biomedical Nanotechnology, 2022, 18, 660-676.	0.5	18
13	Macrophage-mediated cancer drug delivery. Materials Today Sustainability, 2021, 11-12, 100055.	1.9	15
14	Diverse Particle Carriers Prepared by Coâ€Precipitation and Phase Separation: Formation and Applications. ChemPlusChem, 2021, 86, 49-58.	1.3	26
15	Biomimetic core–shell silica nanoparticles using a dual-functional peptide. Journal of Colloid and Interface Science, 2021, 581, 185-194.	5.0	14
16	Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules, 2021, 22, 330-339.	2.6	43
17	Droplet shape control using microfluidics and designer biosurfactants. Journal of Colloid and Interface Science, 2021, 584, 528-538.	5.0	20
18	Nanoparticleâ€Stabilized Oxygen Microcapsules Prepared by Interfacial Polymerization for Enhanced Oxygen Delivery. Angewandte Chemie - International Edition, 2021, 60, 9284-9289.	7.2	37

#	Article	IF	CITATIONS
19	Nanoparticleâ€Stabilized Oxygen Microcapsules Prepared by Interfacial Polymerization for Enhanced Oxygen Delivery. Angewandte Chemie, 2021, 133, 9370-9375.	1.6	0
20	Integration of microfluidic systems with external fields for multiphase process intensification. Chemical Engineering Science, 2021, 234, 116450.	1.9	14
21	Implications of Quenchingâ€toâ€Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dyeâ€Labeled Nanoparticles. Angewandte Chemie, 2021, 133, 15554-15563.	1.6	1
22	Implications of Quenchingâ€ŧoâ€Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dye‣abeled Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 15426-15435.	7.2	15
23	Innentitelbild: Implications of Quenchingâ€ŧoâ€Dequenching Switch in Quantitative Cell Uptake and Biodistribution of Dyeâ€Labeled Nanoparticles (Angew. Chem. 28/2021). Angewandte Chemie, 2021, 133, 15242-15242.	1.6	Ο
24	Insight into drug encapsulation in polymeric nanoparticles using microfluidic nanoprecipitation. Chemical Engineering Science, 2021, 235, 116468.	1.9	21
25	Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacological Research, 2021, 169, 105608.	3.1	32
26	Microfluidic synthesis of curcumin loaded polymer nanoparticles with tunable drug loading and pH-triggered release. Journal of Colloid and Interface Science, 2021, 594, 474-484.	5.0	45
27	Artificial cells for the treatment of liver diseases. Acta Biomaterialia, 2021, 130, 98-114.	4.1	7
28	Enhanced radiotherapy efficacy and induced anti-tumor immunity in HCC by improving hypoxia microenvironment using oxygen microcapsules. Chemical Engineering Journal, 2021, 422, 130109.	6.6	24
29	Quantitative comparison of different fluorescent dye-loaded nanoparticles. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111923.	2.5	7
30	Facile bioinspired synthesis of iron oxide encapsulating silica nanocapsules. Journal of Colloid and Interface Science, 2021, 601, 78-84.	5.0	18
31	FRET Ratiometric Nanoprobes for Nanoparticle Monitoring. Biosensors, 2021, 11, 505.	2.3	18
32	Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Industrial & Engineering Chemistry Research, 2020, 59, 4134-4149.	1.8	109
33	Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma. International Journal of Cancer, 2020, 147, 1519-1527.	2.3	25
34	Jâ€Aggregateâ€Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie, 2020, 132, 20240-20249.	1.6	10
35	Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery. ACS Biomaterials Science and Engineering, 2020, 6, 5040-5050.	2.6	22
36	Jâ€Aggregateâ€Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie - International Edition, 2020, 59, 20065-20074.	7.2	42

#	Article	IF	CITATIONS
37	Development of Highâ€Ðrug‣oading Nanoparticles. ChemPlusChem, 2020, 85, 2143-2157.	1.3	128
38	NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nature Communications, 2020, 11, 4192.	5.8	163
39	Development of Coreâ€Shell Nanoparticle Drug Delivery Systems Based on Biomimetic Mineralization. ChemBioChem, 2020, 21, 2871-2879.	1.3	23
40	Development of a Microfluidic Droplet-Based Microbioreactor for Microbial Cultivation. ACS Biomaterials Science and Engineering, 2020, 6, 3630-3637.	2.6	14
41	Active Encapsulation in Biocompatible Nanocapsules. Small, 2020, 16, e2002716.	5.2	42
42	A general approach for biomimetic mineralization of MOF particles using biomolecules. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111108.	2.5	28
43	Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angewandte Chemie, 2020, 132, 4750-4758.	1.6	40
44	Stable Polymer Nanoparticles with Exceptionally High Drug Loading by Sequential Nanoprecipitation. Angewandte Chemie - International Edition, 2020, 59, 4720-4728.	7.2	81
45	Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. International Journal of Pharmaceutics, 2020, 581, 119291.	2.6	36
46	Nanoparticle elasticity regulates phagocytosis and cancer cell uptake. Science Advances, 2020, 6, eaaz4316.	4.7	143
47	Numerical investigation of drug transport from blood vessels to tumour tissue using a Tumour-Vasculature-on-a-Chip. Chemical Engineering Science, 2019, 208, 115155.	1.9	11
48	Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields. Heliyon, 2019, 5, e02277.	1.4	10
49	Bioinspired Core–Shell Nanoparticles for Hydrophobic Drug Delivery. Angewandte Chemie, 2019, 131, 14495-14502.	1.6	18
50	Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 2019, 13, 7410-7424.	7.3	243
51	Bioinspired Core–Shell Nanoparticles for Hydrophobic Drug Delivery. Angewandte Chemie - International Edition, 2019, 58, 14357-14364.	7.2	85
52	Controlled co-precipitation of biocompatible colorant-loaded nanoparticles by microfluidics for natural color drinks. Lab on A Chip, 2019, 19, 2089-2095.	3.1	53
53	A Microfluidic Tumorâ€onâ€aâ€Chip for Assessing Multifunctional Liposomes' Tumor Targeting and Anticancer Efficacy. Advanced Healthcare Materials, 2019, 8, e1900015.	3.9	47
54	Automatic Live and Dead Cell Classification via Hyperspectral Imaging. , 2019, , .		2

#	Article	IF	CITATIONS
55	Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. Journal of Colloid and Interface Science, 2019, 539, 497-503.	5.0	102
56	Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Applied Microbiology and Biotechnology, 2019, 103, 659-671.	1.7	54
57	Fluid properties and hydrodynamics of microfluidic systems. , 2019, , 37-77.		4
58	Understanding the Effects of Nanocapsular Mechanical Property on Passive and Active Tumor Targeting. ACS Nano, 2018, 12, 2846-2857.	7.3	126
59	A numerical investigation of drug extravasation using a tumour–vasculature microfluidic device. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	8
60	Microfluidic Formation of Coculture Tumor Spheroids with Stromal Cells As a Novel 3D Tumor Model for Drug Testing. ACS Biomaterials Science and Engineering, 2018, 4, 4425-4433.	2.6	64
61	Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation. ACS Nano, 2018, 12, 11600-11609.	7.3	111
62	Synergetic Combinations of Dualâ€Targeting Ligands for Enhanced In Vitro and In Vivo Tumor Targeting. Advanced Healthcare Materials, 2018, 7, e1800106.	3.9	50
63	Cost-effective downstream processing of recombinantly produced pexiganan peptide and its antimicrobial activity. AMB Express, 2018, 8, 6.	1.4	21
64	Design and production of a novel antimicrobial fusion protein in Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 8763-8772.	1.7	10
65	Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 130, 1-10.	2.0	60
66	Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications. Chemical Engineering Science, 2017, 169, 78-96.	1.9	86
67	Controlled Generation of Ultrathinâ€5hell Double Emulsions and Studies on Their Stability. ChemPhysChem, 2017, 18, 1393-1399.	1.0	29
68	Collective generation of milliemulsions by step-emulsification. RSC Advances, 2017, 7, 14932-14938.	1.7	20
69	Fundamental studies on throughput capacities of hydrodynamic flow-focusing microfluidics for producing monodisperse polymer nanoparticles. Chemical Engineering Science, 2017, 169, 128-139.	1.9	69
70	Conformation and self-assembly changes of isomeric peptide amphiphiles influenced by switching tyrosine in the sequences. Journal of Materials Chemistry B, 2017, 5, 5189-5195.	2.9	7
71	Biomimetic Silica Nanocapsules for Tunable Sustained Release and Cargo Protection. Langmuir, 2017, 33, 5777-5785.	1.6	24
72	A partially purified outer membrane protein VirB9-1 for low-cost nanovaccines against Anaplasma marginale. Vaccine, 2017, 35, 77-83.	1.7	3

#	Article	IF	CITATIONS
73	From Folding to Function: Design of a New Switchable Biosurfactant Protein. ChemPhysChem, 2017, 18, 488-492.	1.0	3
74	Biocompatible microcapsules with a water core templated from single emulsions. Chinese Chemical Letters, 2017, 28, 1897-1900.	4.8	21
75	Design of Modular Peptide Surfactants and Their Surface Activity. Langmuir, 2017, 33, 7957-7967.	1.6	15
76	Biocompatible Amphiphilic Hydrogel–Solid Dimer Particles as Colloidal Surfactants. ACS Nano, 2017, 11, 11978-11985.	7.3	72
77	Interfacial Films Formed by a Biosurfactant Modularized with a Silken Tail. Journal of Physical Chemistry C, 2017, 121, 14658-14667.	1.5	5
78	Non hromatographic bioprocess engineering of a recombinant mineralizing protein for the synthesis of silica nanocapsules. Biotechnology and Bioengineering, 2017, 114, 335-343.	1.7	14
79	Dispersing hydrophobic natural colourant β-carotene in shellac particles for enhanced stability and tunable colour. Royal Society Open Science, 2017, 4, 170919.	1.1	16
80	Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS ONE, 2016, 11, e0154295.	1.1	19
81	Stable Ultrathinâ€ S hell Double Emulsions for Controlled Release. ChemPhysChem, 2016, 17, 1553-1556.	1.0	24
82	Interfacial engineering for silica nanocapsules. Advances in Colloid and Interface Science, 2016, 236, 83-100.	7.0	38
83	Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloids and Surfaces B: Biointerfaces, 2016, 148, 402-410.	2.5	66
84	Insights into the Role of Biomineralizing Peptide Surfactants on Making Nanoemulsion-Templated Silica Nanocapsules. Langmuir, 2016, 32, 822-830.	1.6	16
85	Synthesis and Characterization of Nanomaterials Using Microfluidic Technology. , 2016, , 455-473.		5
86	Interfacial Biomimetic Synthesis of Silica Nanocapsules Using a Recombinant Catalytic Modular Protein. Langmuir, 2015, 31, 1999-2007.	1.6	21
87	Synthesis and Characterization of Nanomaterials Using Microfluidic Technology. , 2015, , 1-16.		0
88	A simple and low ost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnology and Bioengineering, 2015, 112, 957-964.	1.7	26
89	Sustained Release of Fipronil Insecticide <i>in Vitro</i> and <i>in Vivo</i> from Biocompatible Silica Nanocapsules. Journal of Agricultural and Food Chemistry, 2014, 62, 12504-12511.	2.4	105
90	Nanoparticle vaccines. Vaccine, 2014, 32, 327-337.	1.7	737

#	Article	IF	CITATIONS
91	Emulsion-templated silica nanocapsules formed using bio-inspired silicification. Chemical Communications, 2014, 50, 11325.	2.2	44
92	Titania microparticles using a facile microfluidic mass-transfer control method. Chemical Engineering Science, 2014, 112, 10-14.	1.9	4
93	Magnetic mesoporous silica nanoparticles end-capped with hydroxyapatite for pH-responsive drug release. Journal of Materials Chemistry B, 2013, 1, 4828.	2.9	52
94	Development of a group contribution method for determination of thermal conductivity of ionic liquids. Fluid Phase Equilibria, 2013, 339, 10-14.	1.4	65
95	Microfluidic synthesis of monodisperse hierarchical silica particles with raspberry-like morphology. RSC Advances, 2013, 3, 21227.	1.7	27
96	One-step fabrication of titania hollow spheres by controlled interfacial reaction in a droplet-based microfluidic system. Microfluidics and Nanofluidics, 2013, 14, 703-709.	1.0	11
97	Stimuli-Responsive Peptide Nanostructures at the Fluid–Fluid Interface. Methods in Molecular Biology, 2013, 996, 179-194.	0.4	0
98	Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Advanced Drug Delivery Reviews, 2013, 65, 1420-1446.	6.6	350
99	Design of low-charge peptide sequences for high-yield formation of titaniananoparticles. RSC Advances, 2012, 2, 1292-1295.	1.7	21
100	Investigation of Convective Heat Transfer with Liquids in Microtubes. Industrial & Engineering Chemistry Research, 2012, 51, 9386-9395.	1.8	7
101	A simple corresponding-states group-contribution method for estimating surface tension of ionic liquids. Fluid Phase Equilibria, 2012, 328, 42-48.	1.4	51
102	Microfluidic Elucidation of the Effects of Interfacial Rheology on Droplet Deformation. Industrial & Engineering Chemistry Research, 2012, 51, 2021-2029.	1.8	12
103	Imaging the effects of peptide bio-surfactants on droplet deformation in a Taylor–Couette shear cell. Soft Matter, 2011, 7, 2961.	1.2	9
104	Two-phase microfluidic flows. Chemical Engineering Science, 2011, 66, 1394-1411.	1.9	328
105	Nanoparticle synthesis in microreactors. Chemical Engineering Science, 2011, 66, 1463-1479.	1.9	362
106	Mass transfer and separation criteria for highâ€speed countercurrent chromatography. AICHE Journal, 2011, 57, 359-372.	1.8	6
107	Effects of fluid-fluid interfacial elasticity on droplet formation in microfluidic devices. AICHE Journal, 2011, 57, 1669-1677.	1.8	35
108	A Nonlinear Active Learning Based on AUC Optimization and Its Application to Obstacle Detection. Jiqiren/Robot, 2010, 32, 344-351.	0.4	0

7

#	Article	IF	CITATIONS
109	A Method of Fast Laser Scanner Simulation in ALV. , 2009, , .		2
110	Microfluidic Massâ€Transfer Control for the Simple Formation of Complex Multiple Emulsions. Angewandte Chemie - International Edition, 2009, 48, 7208-7211.	7.2	50
111	Axial dispersion coefficient in high-speed counter-current chromatography. Journal of Chromatography A, 2009, 1216, 4841-4846.	1.8	7
112	Densities and Viscosities of Binary Mixtures of Tri- <i>n</i> -butyl Phosphate + Cyclohexane, + <i>n</i> -Heptane at <i>T</i> = (288.15, 293.15, 298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data, 2008, 53, 2244-2246.	1.0	39
113	Densities and Viscosities of Binary Mixtures of Tris(2-ethylhexyl) Phosphate + Cyclohexane or n-Hexane at T = (293.15, 298.15, and 303.15) K and p = 0.1 MPa. Journal of Chemical & amp; Engineering Data, 2008, 53, 2718-2720.	1.0	23
114	Solubility of Atractylenolide III in Hexane, Ethyl Acetate, Diethyl Ether, and Ethanol from (283.2 to) Tj ETQq0 0 0 i	rgBT/Over 1.0	loçk 10 Tf 50
115	Retention of the stationary phase for high-speed countercurrent chromatography. AICHE Journal, 2007, 53, 1460-1471.	1.8	23
116	Sample capacity in preparative high-speed counter-current chromatography. Journal of Chromatography A, 2007, 1146, 186-192.	1.8	29
117	Alteration of RPL14 in squamous cell carcinomas and preneoplastic lesions of the esophagus. Gene, 2006, 366, 161-168.	1.0	27

118	Preparative isolation and purification of atractylon and atractylenolide III from the Chinese medicinal plantAtractylodes macrocephala by high-speed counter-current chromatography. Journal of Separation Science, 2006, 29, 1630-1636.	1.3	8 43	
-----	--	-----	------	--