
George J Kontoghiorghes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4006794/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Insights of Chelator Complexes with Essential Transition Metals: Antioxidant/Pro-Oxidant Activity and Applications in Medicine. International Journal of Molecular Sciences, 2022, 23, 1247.	1.8	23
2	Questioning Established Theories and Treatment Methods Related to Iron and Other Metal Metabolic Changes, Affecting All Major Diseases and Billions of Patients. International Journal of Molecular Sciences, 2022, 23, 1364.	1.8	0
3	Deferiprone: A Forty-Year-Old Multi-Targeting Drug with Possible Activity against COVID-19 and Diseases of Similar Symptomatology. International Journal of Molecular Sciences, 2022, 23, 6735.	1.8	7
4	New Era in the Treatment of Iron Deficiency Anaemia Using Trimaltol Iron and Other Lipophilic Iron Chelator Complexes: Historical Perspectives of Discovery and Future Applications. International Journal of Molecular Sciences, 2021, 22, 5546.	1.8	19
5	Conventional and Unconventional Approaches for Innovative Drug Treatments in COVID-19: Looking Outside of Plato's Cave. International Journal of Molecular Sciences, 2021, 22, 7208.	1.8	4
6	Differences between the European Union and United States of America in Drug Regulatory Affairs Affect Global Patient Safety Standards and Public Health Awareness: The Case of Deferasirox and Other Iron Chelating Drugs. Medicines (Basel, Switzerland), 2021, 8, 36.	0.7	3
7	Antioxidant Activity of Deferasirox and Its Metal Complexes in Model Systems of Oxidative Damage: Comparison with Deferiprone. Molecules, 2021, 26, 5064.	1.7	10
8	Ethics in Medicines: Exposing Unethical Practices and Corruption in All Sectors of Medicines Is Essential for Improving Global Public Health and Saving Patients' Lives. Medicines (Basel, Switzerland), 2021, 8, 54.	0.7	3
9	The need for a multi-level drug targeting strategy to curb the COVID-19 pandemic. Frontiers in Bioscience, 2021, 26, 1723-1736.	0.8	10
10	THE HISTORY OF DEFERIPRONE (L1) AND THE COMPLETE TREATMENT OF IRON OVERLOAD IN THALASSAEMIA. Mediterranean Journal of Hematology and Infectious Diseases, 2020, 12, e2020011.	0.5	28
11	Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. Medicines (Basel, Switzerland), 2020, 7, 45.	0.7	43
12	Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone. International Journal of Molecular Sciences, 2020, 21, 3967.	1.8	88
13	Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells, 2020, 9, 1456.	1.8	84
14	How to manage iron toxicity in post-allogeneic hematopoietic stem cell transplantation?. Expert Review of Hematology, 2020, 13, 299-302.	1.0	18
15	Advances on Chelation and Chelator Metal Complexes in Medicine. International Journal of Molecular Sciences, 2020, 21, 2499.	1.8	35
16	Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. Expert Opinion on Investigational Drugs, 2019, 28, 593-603.	1.9	31
17	Chelation protocols for the elimination and prevention of iron overload in thalassaemia. Frontiers in Bioscience - Landmark, 2018, 23, 1082-1098.	3.0	10
18	Prevention of Iron Overload and Long Term Maintenance of Normal Iron Stores in Thalassaemia Major Patients using Deferiprone or Deferiprone Deferoxamine Combination. Drug Research, 2017, 67, 404-411.	0.7	16

#	Article	IF	CITATIONS
19	The aim of iron chelation therapy in thalassaemia. European Journal of Haematology, 2017, 99, 465-466.	1.1	7
20	Transfusion-related acute lung injury (TRALI) in two thalassaemia patients caused by the same multiparous blood donor. Mediterranean Journal of Hematology and Infectious Diseases, 2016, 9, e2017060.	0.5	5
21	Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Design, Development and Therapy, 2016, 10, 465.	2.0	108
22	New developments and controversies in iron metabolism and iron chelation therapy. World Journal of Methodology, 2016, 6, 1.	1.1	35
23	Dietary and pharmacological factors affecting iron absorption in mice and man (Comment for a Letter) Tj ETQq1	1 0.78431 1.7	4 ggBT /Over
24	Phytochelators Intended for Clinical Use in Iron Overload, Other Diseases of Iron Imbalance and Free Radical Pathology. Molecules, 2015, 20, 20841-20872.	1.7	44
25	Characterization of the Neuroprotective Potential of Derivatives of the Iron Chelating Drug Deferiprone. Neurochemical Research, 2015, 40, 609-620.	1.6	20
26	Antioxidant targeting by deferiprone in diseases related to oxidative damage. Frontiers in Bioscience - Landmark, 2014, 19, 862.	3.0	24
27	World health dilemmas: Orphan and rare diseases, orphan drugs and orphan patients. World Journal of Methodology, 2014, 4, 163.	1.1	32
28	Transition of Thalassaemia and Friedreich ataxia from fatal to chronic diseases. World Journal of Methodology, 2014, 4, 197.	1.1	23
29	Liver iron and serum ferritin levels are misleading for estimating cardiac, pancreatic, splenic and total body iron load in thalassemia patients: factors influencing the heterogenic distribution of excess storage iron in organs as identified by MRI T2*. Toxicology Mechanisms and Methods, 2013, 23, 48-56.	1.3	44
30	Potential clinical applications of chelating drugs in diseases targeting transferrin-bound iron and other metals. Expert Opinion on Investigational Drugs, 2013, 22, 591-618.	1.9	27
31	The importance of spleen, spleen iron, and splenectomy for determining total body iron load, ferrikinetics, and iron toxicity in thalassemia major patients. Toxicology Mechanisms and Methods, 2013, 23, 34-41.	1.3	33
32	EDTA chelation reappraisal following new clinical trials and regular use in millions of patients: review of preliminary findings and risk/benefit assessment. Toxicology Mechanisms and Methods, 2013, 23, 11-17.	1.3	35
33	A record number of fatalities in many categories of patients treated with deferasirox: loopholes in regulatory and marketing procedures undermine patient safety and misguide public funds?. Expert Opinion on Drug Safety, 2013, 12, 605-609.	1.0	18
34	Iron mobilization using chelation and phlebotomy. Journal of Trace Elements in Medicine and Biology, 2012, 26, 127-130.	1.5	28
35	A Record Of 1320 Suspect, Deferasirox-Related, Patient Deaths Reported In 2009: Insufficient Toxicity Testing, Low Efficacy And Lack Of Transparency May Endanger The Lives Of Iron Loaded Patients. Hemoglobin, 2011, 35, 301-311.	0.4	8
36	Interactions Of Hydroxycarbamide (Hydroxyurea) With Iron And Copper: Implications On Toxicity and Therapeutic Strategies. Hemoglobin, 2011, 35, 237-246.	0.4	19

#	Article	IF	CITATIONS
37	Efficacy, Compliance And Toxicity Factors Are Affecting The Rate Of Normalization Of Body Iron Stores In Thalassemia Patients Using The Deferiprone And Deferoxamine Combination Therapy. Hemoglobin, 2011, 35, 186-198.	0.4	29
38	Reduction of body iron stores to normal range levels in thalassaemia by using a deferiprone/deferoxamine combination and their maintenance thereafter by deferiprone monotherapy. European Journal of Haematology, 2010, 85, 430-438.	1.1	41
39	New golden era of chelation therapy in thalassaemia: the achievement and maintenance of normal range body iron stores. British Journal of Haematology, 2010, 150, 489-490.	1.2	17
40	Introduction of higher doses of deferasirox: better efficacy but not effective iron removal from the heart and increased risks of serious toxicities. Expert Opinion on Drug Safety, 2010, 9, 633-641.	1.0	28
41	Safety issues of iron chelation therapy in patients with normal range iron stores including thalassaemia, neurodegenerative, renal and infectious diseases. Expert Opinion on Drug Safety, 2010, 9, 201-206.	1.0	54
42	The Role of Iron and Chelators on Infections in Iron Overload and Non Iron Loaded Conditions: Prospects for the Design of New Antimicrobial Therapies. Hemoglobin, 2010, 34, 227-239.	0.4	73
43	Iron Chelation Therapy in Hereditary Hemochromatosis and Thalassemia Intermedia: Regulatory and Non Regulatory Mechanisms of Increased Iron Absorption. Hemoglobin, 2010, 34, 251-264.	0.4	32
44	Maintenance of Normal Range Body Iron Store Levels for up to 4.5 Years in Thalassemia Major Patients Using Deferiprone Monotherapy. Hemoglobin, 2010, 34, 204-209.	0.4	15
45	Future challenges in the use of magnetic resonance imaging for the diagnosis of iron overload. Blood Transfusion, 2010, 8, 309-10.	0.3	3
46	Regulation of mu-opioid receptors by cytokines. Frontiers in Bioscience - Elite, 2009, 1, 164.	0.9	29
47	A New Era in Iron Chelation Therapy: The Design of Optimal, Individually Adjusted Iron Chelation Therapies for the Complete Removal of Iron Overload in Thalassemia and other Chronically Transfused Patients. Hemoglobin, 2009, 33, 332-338.	0.4	36
48	Uses and Limitations of Serum Ferritin, Magnetic Resonance Imaging T2 and T2* in the Diagnosis of Iron Overload and in the Ferrikinetics of Normalization of the Iron Stores in Thalassemia Using the International Committee on Chelation Deferiprone/Deferoxamine Combination Protocol. Hemoglobin, 2009, 33, 312-322.	0.4	30
49	Risk/Benefit Assessment, Advantages Over Other Drugs and Targeting Methods in the Use of Deferiprone as a Pharmaceutical Antioxidant in Iron Loading and Non Iron Loading Conditions. Hemoglobin, 2009, 33, 386-397.	0.4	27
50	Advances in the Prevention and Treatment are Changing Thalassemia from a Fatal to a Chronic Disease. Experience from a Cyprus Model and its Use as a Paradigm for Future Applications. Hemoglobin, 2009, 33, 287-295.	0.4	24
51	The Proceedings of the 17th International Conference on Chelation: Application of Effective Chelation Therapies in Iron Loading and Non Iron Loading Conditions, and the Gap in the Prevention and Treatment Policies on Thalassemia Between Developed and Developing Countries. Hemoglobin, 2009, 33, 283-286.	0.4	2
52	Long Term Comparative Studies in Thalassemia Patients Treated with Deferoxamine or a Deferoxamine/Deferiprone Combination. Identification of Effective Chelation Therapy Protocols. Hemoglobin, 2008, 32, 41-47.	0.4	50
53	Ethical Issues and Risk/Benefit Assessment of Iron Chelation Therapy: Advances with Deferiprone/Deferoxamine Combinations and Concerns about the Safety, Efficacy and Costs of Deferasirox. Hemoglobin, 2008, 32, 1-15.	0.4	40
54	The Effects of Bicarbonate and its Combination with Chelating Agents Used for the Removal of Depleted Uranium in Rats. Hemoglobin, 2008, 32, 191-198.	0.4	18

#	Article	IF	CITATIONS
55	Update on toxicity and efficacy aspects of treatment with deferasirox and its implication on the morbidity and mortality of transfused iron loaded patients. Expert Opinion on Drug Safety, 2008, 7, 645-646.	1.0	7
56	Myocyte Damage and Loss of Myofibers is the Potential Mechanism of Iron Overload Toxicity in Congestive Cardiac Failure in Thalassemia. Complete Reversal of the Cardiomyopathy and Normalization of Iron Load by Deferiprone. Hemoglobin, 2008, 32, 17-28.	0.4	35
57	Transparency and Access to Full Information for the Fatal or Serious Toxicity Risks, Low Efficacy and High Price of Deferasirox, Could Increase the Prospect of Improved Iron Chelation Therapy Worldwide. Hemoglobin, 2008, 32, 608-615.	0.4	18
58	Chelators Controlling Metal Metabolism and Toxicity Pathways: Applications in Cancer Prevention, Diagnosis and Treatment. Hemoglobin, 2008, 32, 217-227.	0.4	32
59	Deferasirox: uncertain future following renal failure fatalities, agranulocytosis and other toxicities. Expert Opinion on Drug Safety, 2007, 6, 235-239.	1.0	63
60	Effective Combination Therapy of Deferiprone and deferoxamine for the Rapid Clearance of Excess Cardiac IRON and the Prevention of Heart Disease in Thalassemia. The Protocol of the International Committee on Oral Chelators. Hemoglobin, 2006, 30, 239-249.	0.4	45
61	Iron Mobilization From Transferrin And Non-Transferrin-Bound-Iron by Deferiprone. Implications in the Treatment of Thalassemia, Anemia of Chronic Disease, Cancer and Other Conditions. Hemoglobin, 2006, 30, 183-200.	0.4	44
62	Low Serum Ferritin Levels are Misleading for Detecting Cardiac Iron Overload and Increase the Risk of Cardiomyopathy in Thalassemia Patients. The Importance of Cardiac Iron Overload Monitoring Using Magnetic Resonance Imaging T2 and T2*. Hemoglobin, 2006, 30, 219-227.	0.4	72
63	Future Chelation Monotherapy and Combination Therapy Strategies in Thalassemia and Other Conditions. Comparison of Deferiprone, Deferoxamine, ICL670, GT56-252, L1NAll and Starch Deferoxamine Polymers. Hemoglobin, 2006, 30, 329-347.	0.4	28
64	New chelation therapies and emerging chelating drugs for the treatment of iron overload. Expert Opinion on Emerging Drugs, 2006, 11, 1-5.	1.0	17
65	Radiation Protection by Deferiprone in Animal Models. Hemoglobin, 2006, 30, 201-208.	0.4	10
66	Iron mobilisation from transferrin by deferiprone (L1). British Journal of Haematology, 2005, 129, 157-157.	1.2	2
67	Advances in Iron Overload Therapies. Prospects for Effective Use of Deferiprone (L1), Deferoxamine, the New Experimental Chelators ICL670, GT56-252, L1NAll and their Combinations. Current Medicinal Chemistry, 2005, 12, 2663-2681.	1.2	114
68	Editorial [Hot Topic: Regulatory Molecules and Chelators Used for the Control of Essential and Toxic Metals in Health and Disease: From Molecular Interactions to Clinical Effects and Applications (Guest) Tj ETQqO	0 01£gBT /(Ovørlock 10 T
69	Molecular Factors and Mechanisms Affecting Iron and Other Metal Excretion or Absorption in Health and Disease. The Role of Natural and Synthetic Chelators. Current Medicinal Chemistry, 2005, 12, 2695-2709.	1.2	44
70	Effects of ICL670 (deferasirox) on cardiac iron concentrations. Lancet, The, 2005, 366, 804.	6.3	14
71	Prophylactic use of deferiprone (L1) and magnetic resonance imaging T2* or T2 for preventing heart disease in thalassaemia. British Journal of Haematology, 2004, 127, 360-361.	1.2	29
	Densities and Disks of Deferingens in lass Quarland in The lass such as dother Quarling During Quart		

Benefits and Risks of Deferiprone in Iron Overload in Thalassaemia and Other Conditions. Drug Safety, 2003, 26, 553-584.

#	Article	IF	CITATIONS
73	Do we need more iron-chelating drugs?. Lancet, The, 2003, 362, 495-496.	6.3	17
74	Effects on Mycobacterium avium Replication in Normal Human Macrophages by Deferiprone (L1) and Other Iron Chelators. Arzneimittelforschung, 2002, 52, 45-52.	0.5	6
75	Clinical use, therapeutic aspects and future potential of deferiprone in thalassemia and other conditions of iron and other metal toxicity. Drugs of Today, 2001, 37, 23.	2.4	22
76	Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfusion Science, 2000, 23, 211-223.	0.6	103
77	New concepts of iron and aluminium chelation therapy with oral L1 (deferiprone) and other chelators. A review. Analyst, The, 1995, 120, 845.	1.7	90
78	Present status and future prospects of oral iron chelation therapy in thalassaemia and other diseases. Indian Journal of Pediatrics, 1993, 60, 485-507.	0.3	15
79	Pharmacokinetic studies in humans with the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one. Clinical Pharmacology and Therapeutics, 1990, 48, 255-261.	2.3	122
80	L1 (1,2-dimethyl-3-hydroxypyrid-4-one) for oral iron chelation in patients with beta-thalassaemia major. British Journal of Haematology, 1990, 76, 550-553.	1.2	85
81	Uptake and intracellular distribution of iron from transferrin and chelators in erythroid cells. Biology of Metals, 1990, 3, 183-187.	1.1	25
82	Effect of novel 1-alkyl-3-hydroxy-2-methylpyrid-4-one chelators on uptake and release of iron from macrophages. American Journal of Hematology, 1990, 34, 21-25.	2.0	24
83	Design, Properties, and Effective Use of the Oral Chelator L1 and Other Annals of the New York Academy of Sciences, 1990, 612, 339-350.	1.8	44
84	Iron chelators inhibit human platelet aggregation, thromboxane A2 synthesis and lipoxygenase activity. FEBS Letters, 1989, 245, 105-109.	1.3	48
85	Structure/red blood cell permeability. Activity of iron(III) chelator complexes. Inorganica Chimica Acta, 1988, 151, 101-106.	1.2	23
86	Orally Active Alpha-Ketohydroxypyridine Iron Chelators: Effects on Iron and Other Metal Mobilisations. Acta Haematologica, 1987, 78, 212-216.	0.7	21
87	The effect of 2,4-dihydroxypyridine-N-oxide, a new orally active iron chelator, on iron excretion in mice. Clinica Chimica Acta, 1987, 163, 137-141.	0.5	8
88	2-Hydroxypyridine-N-oxides: Effective new chelators in iron mobilisation. Biochimica Et Biophysica Acta - General Subjects, 1987, 924, 13-18.	1.1	10
89	Decrease solubilisation of ferritin iron and fresh iron(III) precipitate following repeated chelator treatments. Inorganica Chimica Acta, 1987, 138, 35-39.	1.2	16
90	Structure/iron binding activity of 1-hydroxypyrid-2-one chelators intended for clinical use. Inorganica Chimica Acta, 1987, 135, 145-150.	1.2	47

#	Article	IF	CITATIONS
91	Simple synthesis of the potent iron chelators 1-alkyl-3-hydroxy-2-methylpyrid-4-ones. Inorganica Chimica Acta, 1987, 136, L11-L12.	1.2	100
92	Variation in iron accumulation, transferrin membrane binding and DNA synthesis in the Kâ€562 and Uâ€937 cell lines induced by chelators and their iron complexes. European Journal of Haematology, 1987, 39, 318-325.	1.1	29
93	Cytotoxic effects of the lipophilic iron chelator omadine. FEBS Letters, 1986, 204, 208-212.	1.3	34
94	Iron mobilisation from lactoferrin by chelators at physiological pH. Biochimica Et Biophysica Acta - General Subjects, 1986, 882, 267-270.	1.1	30
95	Cytotoxic and DNA-inhibitory effects of iron chelators on human leukaemic cell lines. Hematological Oncology, 1986, 4, 195-204.	0.8	66
96	Mobilisation of plutonium and iron from transferrin and ferritin by hydroxypyridone chelators. Inorganica Chimica Acta, 1986, 125, L35-L38.	1.2	22
97	Orally active α-ketohydroxy pyridine iron chelators intended for clinical use: in vivo studies in rabbits. British Journal of Haematology, 1986, 62, 607-613.	1.2	71
98	The study of iron mobilisation from transferrin using α-ketohydroxy heteroaromatic chelators. BBA - Proteins and Proteomics, 1986, 869, 141-146.	2.1	57
99	In Vitro Screening of Iron Chelators Using Models of Free Radical Damage. Free Radical Research Communications, 1986, 2, 115-124.	1.8	54
100	Dose response studies using desferrioxamine and orally active chelators in a mouse model. Scandinavian Journal of Haematology, 1986, 37, 63-70.	0.0	36
101	Site specificity of iron removal from transferrin by α-ketohydroxypyridine chelators. FEBS Letters, 1985, 189, 141-144.	1.3	66