Zhousheng Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4006222/publications.pdf

Version: 2024-02-01

257101 476904 29 1,895 24 29 citations g-index h-index papers 30 30 30 2446 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cilia-like Structures and Polycystin-1 in Osteoblasts/Osteocytes and Associated Abnormalities in Skeletogenesis and Runx2 Expression. Journal of Biological Chemistry, 2006, 281, 30884-30895.	1.6	220
2	Joint mouse–human phenome-wide association to test gene function and disease risk. Nature Communications, 2016, 7, 10464.	5.8	190
3	Novel Regulators of Fgf23 Expression and Mineralization in Hyp Bone. Molecular Endocrinology, 2009, 23, 1505-1518.	3.7	110
4	Conditional deletion of <i>Pkd1</i> in osteocytes disrupts skeletal mechanosensing in mice. FASEB Journal, 2011, 25, 2418-2432.	0.2	110
5	Counterâ€regulatory paracrine actions of <scp>FGF</scp> â€23 and 1,25(<scp>OH</scp>) ₂ D in macrophages. FEBS Letters, 2016, 590, 53-67.	1.3	104
6	Osteocyte-Specific Deletion of Fgfr1 Suppresses FGF23. PLoS ONE, 2014, 9, e104154.	1.1	101
7	Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Current Medicinal Chemistry, 2021, 28, 1489-1507.	1.2	101
8	Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Frontiers in Cell and Developmental Biology, 2020, 8, 601224.	1.8	101
9	Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. Journal of Cell Science, 2012, 125, 1945-57.	1.2	86
10	Selective Runx2-II deficiency leads to low-turnover osteopenia in adult mice. Developmental Biology, 2005, 283, 345-356.	0.9	71
11	Dose-Dependent Effects of <i>Runx2</i> on Bone Development. Journal of Bone and Mineral Research, 2009, 24, 1889-1904.	3.1	66
12	Polycystin-1 Regulates Skeletogenesis through Stimulation of the Osteoblast-specific Transcription Factor RUNX2-II. Journal of Biological Chemistry, 2008, 283, 12624-12634.	1.6	61
13	Conditional Disruption of Pkd1 in Osteoblasts Results in Osteopenia Due to Direct Impairment of Bone Formation. Journal of Biological Chemistry, 2010, 285, 1177-1187.	1.6	61
14	Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Research and Therapy, 2020, 11, 43.	2.4	56
15	FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice. Journal of Molecular and Cellular Cardiology, 2020, 138, 66-74.	0.9	50
16	Polycystin-1 interacts with TAZ to stimulate osteoblastogenesis and inhibit adipogenesis. Journal of Clinical Investigation, 2017, 128, 157-174.	3.9	49
17	Membrane and Integrative Nuclear Fibroblastic Growth Factor Receptor (FGFR) Regulation of FGF-23. Journal of Biological Chemistry, 2015, 290, 10447-10459.	1.6	46
18	Physiological mechanisms and therapeutic potential of bone mechanosensing. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 115-129.	2.6	44

#	Article	IF	CITATIONS
19	Kif3a Deficiency Reverses the Skeletal Abnormalities in Pkd1 Deficient Mice by Restoring the Balance Between Osteogenesis and Adipogenesis. PLoS ONE, 2010, 5, e15240.	1.1	42
20	FGF23 expression is stimulated in transgenic α-Klotho longevity mouse model. JCI Insight, 2019, 4, .	2.3	36
21	Osteoblast-Specific Deletion of Pkd2 Leads to Low-Turnover Osteopenia and Reduced Bone Marrow Adiposity. PLoS ONE, 2014, 9, e114198.	1.1	35
22	Role of Fibroblast Growth Factor-23 in Innate Immune Responses. Frontiers in Endocrinology, 2018, 9, 320.	1.5	34
23	A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia. Science Signaling, 2016, 9, ra113.	1.6	27
24	Downregulation of <i>PKD1</i> by shRNA results in defective osteogenic differentiation via cAMP/PKA pathway in human MGâ€63 cells. Journal of Cellular Biochemistry, 2012, 113, 967-976.	1.2	25
25	Ensemble docking to difficult targets in earlyâ€stage drug discovery: Methodology and application to fibroblast growth factor 23. Chemical Biology and Drug Design, 2018, 91, 491-504.	1.5	25
26	Conditional Mesenchymal Disruption of Pkd1 Results in Osteopenia and Polycystic Kidney Disease. PLoS ONE, 2012, 7, e46038.	1.1	17
27	Validation of a Novel Modified Aptamer-Based Array Proteomic Platform in Patients with End-Stage Renal Disease. Diagnostics, 2018, 8, 71.	1.3	15
28	Novel Small Molecule Fibroblast Growth Factor 23 Inhibitors Increase Serum Phosphate and Improve Skeletal Abnormalities in <i>Hyp</i> Mice. Molecular Pharmacology, 2022, 101, 408-421.	1.0	8
29	Design and development of FGF-23 antagonists: Definition of the pharmacophore and initial structure-activity relationships probed by synthetic analogues. Bioorganic and Medicinal Chemistry, 2021, 29, 115877.	1.4	3