
Lingzhi Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4006196/publications.pdf Version: 2024-02-01

Тимстні 7ни

#	Article	IF	CITATIONS
1	Low-SNR Recognition of UAV-to-Ground Targets Based on Micro-Doppler Signatures Using Deep Convolutional Denoising Encoders and Deep Residual Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	6.3	8
2	Research on anti-Narrowband AM jamming of Ultra-wideband impulse radio detection radar based on improved singular spectrum analysis. Measurement: Journal of the International Measurement Confederation, 2022, 188, 110386.	5.0	9
3	An Improved KSVD Algorithm for Ground Target Recognition Using Carrier-Free UWB Radar. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	8
4	Hierarchical Dictionary Learning for Vehicle Classification Based on the Carrier-Free UWB Radar. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	3
5	Multi-Angle Recognition of Vehicles Based on Carrier-Free UWB Sensor and Deep Residual Shrinkage Learning. IEEE Microwave and Wireless Components Letters, 2022, 32, 927-930.	3.2	2
6	Multilevel Recognition of UAV-to-Ground Targets Based on Micro-Doppler Signatures and Transfer Learning of Deep Convolutional Neural Networks. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	12
7	Modulation Recognition of Radar Signals Based on Adaptive Singular Value Reconstruction and Deep Residual Learning. Sensors, 2021, 21, 449.	3.8	15
8	Ground Target Recognition Using Carrier-Free UWB Radar Sensor With a Semi-Supervised Stacked Convolutional Denoising Autoencoder. IEEE Sensors Journal, 2021, 21, 20685-20693.	4.7	6
9	Deep residual learning in modulation recognition of radar signals using higher-order spectral distribution. Measurement: Journal of the International Measurement Confederation, 2021, 185, 109945.	5.0	9
10	FPGA Based Implementation of All-phase FFT Phase Difference Frequency Measurement. , 2021, , .		1
11	Classification of UAV-to-ground vehicles based on micro-Doppler effect and bispectrum analysis. Signal, Image and Video Processing, 2020, 14, 19-27.	2.7	4
12	Angle Measurement of Fuse Using Linear Frequency Modulation System Based on C6678 MultiCore DSPs. IEEE Sensors Journal, 2020, 20, 4824-4831.	4.7	1
13	Classification of UAV-to-Ground Targets Based on Micro-Doppler Fractal Features Using IEEMD and GA-BP Neural Network. IEEE Sensors Journal, 2020, 20, 348-358.	4.7	14
14	Classification of UAV-to-Ground Targets Based on Enhanced Micro-Doppler Features Extracted via PCA and Compressed Sensing. IEEE Sensors Journal, 2020, 20, 14360-14368.	4.7	13
15	Rotating micro-doppler parameter estimation of ground wheeled vehicles based on SPWD and image enhancement. Optik, 2020, 219, 165119.	2.9	1
16	Research on anti-AM interference of chaotic composite short-range detection system based on singular spectrum decomposition and reconstruction. Optik, 2020, 221, 165369.	2.9	2
17	Analyze of Ship's Micro-Doppler Characteristics Based on Hough Transform. , 2020, , .		4
18	Classification of Ground Vehicles Based on Micro-Doppler Effect and Singular Value Decomposition. , 2019, , .		4

2

Lingzhi Zhu

#	Article	IF	CITATIONS
19	Classification of UAV-to-ground vehicles based on micro-Doppler signatures using singular value decomposition and reconstruction. Optik, 2019, 181, 598-610.	2.9	3
20	Research on Anti-Jamming Technology of Chaotic Composite Short Range Detection System Based on Underdetermined Signal Separation and Spectral Analysis. IEEE Access, 2019, 7, 42298-42308.	4.2	15
21	Classification of UAV-to-Ground Vehicles Based on Micro-Doppler Signatures Using Singular Value Decomposition and Deep Convolutional Neural Networks. IEEE Access, 2019, 7, 22133-22143.	4.2	7