
Silas P Cook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4006164/publications.pdf Version: 2024-02-01

SILAS P COOK

#	Article	IF	CITATIONS
1	Directed Ni-Catalyzed Reductive Arylation of Aliphatic C–H Bonds. Organic Letters, 2022, 24, 3313-3318.	4.6	8
2	Interrupting the Barton–McCombie Reaction: Aqueous Deoxygenative Trifluoromethylation of <i>O</i> -Alkyl Thiocarbonates. Organic Letters, 2021, 23, 808-813.	4.6	20
3	Csp ³ –H Trifluoromethylation of Unactivated Aliphatic Systems. Organic Letters, 2021, 23, 702-705.	4.6	24
4	N-Directed fluorination of unactivated Csp ³ –H bonds. Chemical Science, 2020, 11, 1102-1106.	7.4	37
5	Cu-Catalyzed C–N Coupling with Sterically Hindered Partners. ACS Catalysis, 2020, 10, 10495-10499.	11.2	31
6	Synthesis of Tetrahydroisoquinolines Through an Iron-Catalyzed Cascade: Tandem Alcohol Substitution and Hydroamination. Organic Letters, 2019, 21, 6741-6744.	4.6	7
7	1,2â€(Bis)trifluoromethylation of Alkynes: A Oneâ€Step Reaction to Install an Underutilized Functional Group. Angewandte Chemie, 2019, 131, 11830-11834.	2.0	7
8	Copper-Catalyzed, N-Directed Csp ³ –H Trifluoromethylthiolation (â^'SCF ₃) and Trifluoromethylselenation (â^'SeCF ₃). Journal of the American Chemical Society, 2019, 141, 18405-18410.	13.7	100
9	Fenton-Inspired C–H Functionalization: Peroxide-Directed C–H Thioetherification. Journal of Organic Chemistry, 2019, 84, 13073-13091.	3.2	16
10	1,2â€(Bis)trifluoromethylation of Alkynes: A Oneâ€Step Reaction to Install an Underutilized Functional Group. Angewandte Chemie - International Edition, 2019, 58, 11704-11708.	13.8	41
11	A microdroplet-accelerated Biginelli reaction: mechanisms and separation of isomers using IMS-MS. Chemical Science, 2019, 10, 4822-4827.	7.4	58
12	Stereoinversion of Unactivated Alcohols by Tethered Sulfonamides. Angewandte Chemie, 2019, 131, 1741-1745.	2.0	11
13	Iron-Catalyzed Hydroamination and Hydroetherification of Unactivated Alkenes. Organic Letters, 2019, 21, 1547-1550.	4.6	23
14	Stereoinversion of Unactivated Alcohols by Tethered Sulfonamides. Angewandte Chemie - International Edition, 2019, 58, 1727-1731.	13.8	44
15	Palladium nanoparticles: Chemoselective control for reductive Heck with aryl triflates and 2,3-dihydrofuran. Tetrahedron, 2018, 74, 3314-3317.	1.9	6
16	Aqueous Benzylic C–H Trifluoromethylation for Late-Stage Functionalization. Journal of the American Chemical Society, 2018, 140, 12378-12382.	13.7	114
17	Evaluation of <i>p</i> -(¹³ C, ¹⁵ N-Cyano)phenylalanine as an Extended Time Scale 2D IR Probe of Proteins. Analytical Chemistry, 2017, 89, 5254-5260.	6.5	23
18	Manganese-Catalyzed Borylation of Unactivated Alkyl Chlorides. Journal of the American Chemical Society, 2016, 138, 6139-6142.	13.7	171

SILAS P COOK

#	Article	IF	CITATIONS
19	Iron-Catalyzed, Fluoroamide-Directed C–H Fluorination. Journal of the American Chemical Society, 2016, 138, 12771-12774.	13.7	170
20	Iron-Catalyzed C–N Bond Formation via the Beckmann Rearrangement. Synlett, 2015, 26, 331-334.	1.8	23
21	Artemisinin: A Case Study in the Evolution of Synthetic Strategy. Synlett, 2014, 25, 751-759.	1.8	19
22	Alcohols as electrophiles: iron-catalyzed Ritter reaction and alcohol addition to alkynes. Tetrahedron, 2014, 70, 4204-4207.	1.9	38
23	Iron-Catalyzed Arene Alkylation Reactions with Unactivated Secondary Alcohols. Organic Letters, 2014, 16, 2026-2029.	4.6	53
24	Iron atalyzed C(sp ²)H Alkylation of Carboxamides with Primary Electrophiles. Angewandte Chemie - International Edition, 2014, 53, 11065-11069.	13.8	127
25	A Unified Strategy for Iron-Catalyzed <i>ortho</i> -Alkylation of Carboxamides. Journal of the American Chemical Society, 2014, 136, 13130-13133.	13.7	143
26	Iron-Catalyzed Borylation of Alkyl Electrophiles. Journal of the American Chemical Society, 2014, 136, 9521-9523.	13.7	189
27	Palladiumâ€Catalyzed Intramolecular Iodineâ€Transfer Reactions in the Presence of βâ€Hydrogen Atoms. Angewandte Chemie - International Edition, 2013, 52, 14214-14218.	13.8	72
28	Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignards with Aryl Sulfamates and Tosylates. Organic Letters, 2013, 15, 96-99.	4.6	90
29	Palladium-Catalyzed Alkyne Insertion/Suzuki Reaction of Alkyl Iodides. Journal of the American Chemical Society, 2012, 134, 15297-15300.	13.7	74
30	A Reductive-Heck Approach to the Hydroazulene Ring System: A Formal Synthesis of the Englerins. Organic Letters, 2012, 14, 3340-3343.	4.6	87
31	Reâ€Evaluating the Nucleophilicity of Zinc Enolates in Alkylation Reactions. European Journal of Organic Chemistry, 2012, 2012, 1712-1715.	2.4	25
32	A Concise Synthesis of (+)-Artemisinin. Journal of the American Chemical Society, 2012, 134, 13577-13579.	13.7	137
33	A Simple, Nontoxic Iron System for the Allylation of Zinc Enolates. Organic Letters, 2011, 13, 1904-1907.	4.6	36