
Yang Michael Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer solar cells. Nature Photonics, 2012, 6, 153-161.	15.6	4,041
2	Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photonics, 2018, 12, 131-142.	15.6	1,535
3	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8, 15640.	5.8	669
4	10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub ells. Advanced Materials, 2013, 25, 3973-3978.	11.1	419
5	Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nature Photonics, 2019, 13, 602-608.	15.6	391
6	Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Communications, 2019, 10, 570.	5.8	377
7	High-performance perovskite/Cu(In,Ga)Se ₂ monolithic tandem solar cells. Science, 2018, 361, 904-908.	6.0	314
8	Make perovskite solar cells stable. Nature, 2017, 544, 155-156.	13.7	304
9	Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Science and Applications, 2020, 9, 112.	7.7	272
10	Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nature Photonics, 2021, 15, 187-192.	15.6	237
11	Tailored Phase Conversion under Conjugated Polymer Enables Thermally Stable Perovskite Solar Cells with Efficiency Exceeding 21%. Journal of the American Chemical Society, 2018, 140, 17255-17262.	6.6	235
12	Shining Emitter in a Stable Host: Design of Halide Perovskite Scintillators for X-ray Imaging from Commercial Concept. ACS Nano, 2020, 14, 5183-5193.	7.3	205
13	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 16087-16091.	7.2	192
14	Highâ€Performance Organic Bulkâ€Heterojunction Solar Cells Based on Multipleâ€Đonor or Multipleâ€Acceptor Components. Advanced Materials, 2018, 30, 1705706.	11.1	161
15	Highly Efficient and Tunable Emission of Leadâ€Free Manganese Halides toward White Lightâ€Emitting Diode and Xâ€Ray Scintillation Applications. Advanced Functional Materials, 2021, 31, 2009973.	7.8	160
16	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	6.4	148
17	Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nature Materials, 2022, 21, 210-216.	13.3	146
18	Reproducible Xâ€ray Imaging with a Perovskite Nanocrystal Scintillator Embedded in a Transparent Amorphous Network Structure. Advanced Materials, 2021, 33, e2102529.	11.1	140

YANG MICHAEL YANG

#	Article	IF	CITATIONS
19	Highly Resolved and Robust Dynamic Xâ€Ray Imaging Using Perovskite Glassâ€Ceramic Scintillator with Reduced Light Scattering. Advanced Science, 2021, 8, e2003728.	5.6	128
20	Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices. Nature Communications, 2019, 10, 4540.	5.8	117
21	Efficient and Reproducible Monolithic Perovskite/Organic Tandem Solar Cells with Low-Loss Interconnecting Layers. Joule, 2020, 4, 1594-1606.	11.7	116
22	Highâ€Performance Allâ€Polymer Solar Cells with a Pseudoâ€Bilayer Configuration Enabled by a Stepwise Optimization Strategy. Advanced Functional Materials, 2021, 31, 2010411.	7.8	99
23	Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule, 2021, 5, 1832-1844.	11.7	98
24	Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 3226-3233.	2.1	94
25	Power Conversion Efficiency Enhancement of Low-Bandgap Mixed Pb–Sn Perovskite Solar Cells by Improved Interfacial Charge Transfer. ACS Energy Letters, 2019, 4, 1784-1790.	8.8	76
26	Allâ€Inorganic Perovskite Polymer–Ceramics for Flexible and Refreshable Xâ€Ray Imaging. Advanced Functional Materials, 2022, 32, 2107424.	7.8	69
27	Perovskite semiconductors for direct X-ray detection and imaging. Journal of Semiconductors, 2020, 41, 051204.	2.0	68
28	Realizing High Efficiency over 20% of Lowâ€Bandgap Pb–Snâ€Alloyed Perovskite Solar Cells by In Situ Reduction of Sn ⁴⁺ . Solar Rrl, 2020, 4, 1900467.	3.1	65
29	Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device. Energy and Environmental Science, 2022, 15, 855-865.	15.6	62
30	Surface Reconstruction for Stable Monolithic Allâ€Inorganic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	47
31	Highly Efficient NaGdF ₄ :Ce/Tb Nanoscintillator with Reduced Afterglow and Light Scattering for High-Resolution X-ray Imaging. ACS Applied Materials & Interfaces, 2021, 13, 44596-44603.	4.0	44
32	Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells. Science China Chemistry, 2020, 63, 987-996.	4.2	42
33	In Situ Fabrication of Cs ₃ Cu ₂ I ₅ : Tl Nanocrystal Films for High-Resolution and Ultrastable X-ray Imaging. Journal of Physical Chemistry Letters, 2022, 13, 2862-2870.	2.1	39
34	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie - International Edition, 2021, 60, 27195-27200.	7.2	35
35	Large-area perovskite solar cells. Science Bulletin, 2020, 65, 872-875.	4.3	34
36	Highly Emissive and Stable Fiveâ€Coordinated Manganese(II) Complex for Xâ€Ray Imaging. Laser and Photonics Reviews, 2021, 15, 2100309.	4.4	33

YANG MICHAEL YANG

#	Article	IF	CITATIONS
37	19.34  cm ² large-area quaternary organic photovoltaic module with 12.36% certified efficiency. Photonics Research, 2021, 9, 324.	3.4	20
38	High‣fficiency Organic Tandem Solar Cells With Effective Transition Metal Chelates Interconnecting Layer. Solar Rrl, 2017, 1, 1700139.	3.1	19
39	Lanthanide-doping enables kinetically controlled growth of deep-blue two-monolayer halide perovskite nanoplatelets. Nanoscale, 2021, 13, 11552-11560.	2.8	16
40	Organo-Metal Halide Scintillator with Weak Thermal Quenching Up to 200 °C. Journal of Physical Chemistry Letters, 2022, 13, 5794-5800.	2.1	16
41	Enhanced thermal stability of inverted perovskite solar cells by interface modification and additive strategy. RSC Advances, 2020, 10, 18400-18406.	1.7	15
42	Understanding of the Nearly Linear Tunable Open-Circuit Voltages in Ternary Organic Solar Cells Based on Two Non-fullerene Acceptors. Journal of Physical Chemistry Letters, 2021, 12, 151-156.	2.1	14
43	Solutionâ€Processed Perovskite/Metalâ€Oxide Hybrid Xâ€Ray Detector and Array with Decoupled Electronic and Ionic Transport Pathways. Small Methods, 2022, 6, .	4.6	11
44	Direct Observations of Surface Plasmon Polaritons in Highly Conductive Organic Thin Film. ACS Applied Materials & Interfaces, 2019, 11, 39132-39142.	4.0	10
45	Efficient MA-free Pb-Sn alloyed low-bandgap perovskite solar cells via surface passivation. Nano Energy, 2022, 101, 107596.	8.2	10
46	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie, 2021, 133, 27401-27406.	1.6	9
47	Pbl ₂ –TiO ₂ Bulk Heterojunctions with Long-Range Ordering for X-ray Detectors. Journal of Physical Chemistry Letters, 2021, 12, 11176-11181.	2.1	9
48	Seedâ€Assisted Growth of Methylammoniumâ€Free Perovskite for Efficient Inverted Perovskite Solar Cells. Small Methods, 2022, 6, e2200048.	4.6	9
49	Top-Emitting Microcavity Light-Emitting Diodes Based on All-Thermally Evaporated Lead-Free Copper Halide Self-Trapped-Exciton Emitters. Journal of Physical Chemistry Letters, 2022, 13, 3431-3437.	2.1	9
50	Spectral Narrowing and Enhancement of Directional Emission of Perovskite Light Emitting Diode by Microcavity. Laser and Photonics Reviews, 2022, 16, .	4.4	9
51	Direct Optical Patterning of Nanocrystal-Based Thin-Film Transistors and Light-Emitting Diodes through Native Ligand Cleavage. ACS Applied Nano Materials, 2022, 5, 8457-8466.	2.4	7
52	Characterizations and Understanding of Additives Induced Passivation Effects in Narrow-Bandgap Sn–Pb Alloyed Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 12560-12567.	1.5	6
53	Highly Efficient and Thickness Insensitive Inverted Triple-Cation Perovskite Solar Cells Fabricated by Gas Pumping Method. Journal of Physical Chemistry Letters, 2021, 12, 5580-5586.	2.1	6
54	Efficiency breakthrough for all-perovskite tandem solar cells. Science China Chemistry, 2020, 63, 294-295.	4.2	2

#	Article	lF	CITATIONS
55	Perovskite Quantum Dots for Photovoltaic Applications. Springer Series in Materials Science, 2020, , 243-254.	0.4	1
56	Accurate optical optimization of light-emitting diodes with consideration of coupling between Purcell factor and transmittance coefficient. Optics Express, 2022, 30, 24544.	1.7	1