Thomas O Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005751/publications.pdf

Version: 2024-02-01

100 papers 5,316 citations

38 h-index 70 g-index

103 all docs

103
docs citations

103 times ranked 5682 citing authors

#	Article	IF	CITATIONS
1	Current status of secondary metabolite pathways linked to their related biosynthetic gene clusters in <i>Aspergillus</i> section <i>Nigri</i> Natural Product Reports, 2023, 40, 237-274.	10.3	7
2	Oxepinamides L and M, two new oxepine-pyrimidinone-ketopiperazine type nonribosomal peptides from <i>Aspergillus californicus</i> . Natural Product Research, 2022, 36, 2043-2048.	1.8	5
3	The coupling between irradiance, growth, photosynthesis and prymnesin cell quota and production in two strains of the bloom-forming haptophyte, Prymnesium parvum. Harmful Algae, 2022, 112, 102173.	4.8	11
4	A Molecular Networking Based Discovery of Diketopiperazine Heterodimers and Aspergillicins from Aspergillus caelatus. Journal of Natural Products, 2022, 85, 25-33.	3.0	5
5	A Concise Total Synthesis of the Fungal Isoquinoline Alkaloid TMC-120B. Molecules, 2022, 27, 521.	3.8	2
6	Biosynthesis of Calipyridone A Represents a Fungal 2-Pyridone Formation without Ring Expansion in Aspergillus californicus. Organic Letters, 2022, 24, 804-808.	4.6	6
7	From the North Sea to Drug Repurposing, the Antiseizure Activity of Halimide and Plinabulin. Pharmaceuticals, 2022, 15, 247.	3.8	4
8	Phoenicin Switch: Discovering the Trigger for Radical Phoenicin Production in Multiple Wild-Type <i>Penicillium</i> Species. Applied and Environmental Microbiology, 2022, 88, .	3.1	3
9	New naphthyl derivatives from Aspergillus californicus. Journal of Antibiotics, 2021, 74, 111-114.	2.0	1
10	Bioactive Ascochlorin Analogues from the Marine-Derived Fungus Stilbella fimetaria. Marine Drugs, 2021, 19, 46.	4.6	9
11	Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. MSystems, 2021, 6, .	3.8	55
12	Chitin Degradation Machinery and Secondary Metabolite Profiles in the Marine Bacterium Pseudoalteromonas rubra S4059. Marine Drugs, 2021, 19, 108.	4.6	12
13	Enhancement of antibiotic production by co-cultivation of two antibiotic producing marine <i>Vibrionaceae</i> strains. FEMS Microbiology Ecology, 2021, 97, .	2.7	9
14	Taxonomy Driven Discovery of Polyketides from <i>Aspergillus californicus</i> . Journal of Natural Products, 2021, 84, 979-985.	3.0	8
15	Holomycin, an Antibiotic Secondary Metabolite, Is Required for Biofilm Formation by the Native Producer Photobacterium galatheae S2753. Applied and Environmental Microbiology, 2021, 87, .	3.1	10
16	Genetic origin of homopyrones, a rare type of hybrid phenylpropanoid- and polyketide-derived yellow pigments from Aspergillus homomorphus. Applied Microbiology and Biotechnology, 2021, 105, 5113-5121.	3.6	4
17	Mass Spectrometry-Based Network Analysis Reveals New Insights Into the Chemodiversity of 28 Species in Aspergillus section Flavi. Frontiers in Fungal Biology, 2021, 2, .	2.0	8
18	Alkali Metal- and Acid-Catalyzed Interconversion of Goniodomin A with Congeners B and C. Journal of Natural Products, 2021, 84, 2554-2567.	3.0	5

#	Article	IF	CITATIONS
19	Polyketide synthase genes and molecular trade-offs in the ichthyotoxic species Prymnesium parvum. Science of the Total Environment, 2021, 795, 148878.	8.0	10
20	Polycyclic Tetramate Macrolactamsâ€"A Group of Natural Bioactive Metallophores. Frontiers in Chemistry, 2021, 9, 772858.	3.6	4
21	Unique processes yielding pure azaphilones in Talaromyces atroroseus. Applied Microbiology and Biotechnology, 2020, 104, 603-613.	3.6	27
22	Fungal Partially Reducing Polyketides and Related Natural Products From Aspergillus, Penicillium, and Talaromyces., 2020,, 313-332.		2
23	Atrorosins: a new subgroup of Monascus pigments from Talaromyces atroroseus. Applied Microbiology and Biotechnology, 2020, 104, 615-622.	3.6	31
24	Tenuazonic acid fromStemphylium lotiinhibits the plant plasma membrane H+â€ATPase by a mechanism involving the Câ€terminal regulatory domain. New Phytologist, 2020, 226, 770-784.	7.3	24
25	Karmitoxin production by Karlodinium armiger and the effects of K. armiger and karmitoxin towards fish. Harmful Algae, 2020, 99, 101905.	4.8	5
26	Production of the antimicrobial compound tetrabromopyrrole and the Pseudomonas quinolone system precursor, 2-heptyl-4-quinolone, by a novel marine species Pseudoalteromonas galatheae sp. nov Scientific Reports, 2020, 10, 21630.	3.3	15
27	The Antibiotic Andrimid Produced by Vibrio corallilyticus Increases Expression of Biosynthetic Gene Clusters and Antibiotic Production in Photobacterium galatheae. Frontiers in Microbiology, 2020, 11, 622055.	3.5	11
28	Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides. Metabolites, 2020, 10, 246.	2.9	9
29	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	12.8	125
30	Acurin A, a novel hybrid compound, biosynthesized by individually translated PKS- and NRPS-encoding genes in Aspergillus aculeatus. Fungal Genetics and Biology, 2020, 139, 103378.	2.1	16
31	Mass Spectrometry Guided Discovery and Design of Novel Asperphenamate Analogs From Penicillium astrolabium Reveals an Extraordinary NRPS Flexibility. Frontiers in Microbiology, 2020, 11, 618730.	3.5	8
32	New azaphilones from Aspergillus neoglaber. AMB Express, 2020, 10, 145.	3.0	4
33	Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001. Synthetic and Systems Biotechnology, 2019, 4, 142-149.	3.7	46
34	A-, B- and C-type prymnesins are clade specific compounds and chemotaxonomic markers in Prymnesium parvum. Harmful Algae, 2019, 81, 10-17.	4.8	39
35	Development of an Indirect Quantitation Method to Assess Ichthyotoxic B-Type Prymnesins from Prymnesium parvum. Toxins, 2019, 11, 251.	3.4	8
36	Isolation of Methyl Troposulfenin from <i>Phaeobacter inhibens</i> . Journal of Natural Products, 2019, 82, 1387-1390.	3.0	10

#	Article	IF	Citations
37	Zebrafish-Based Discovery of Antiseizure Compounds from the North Sea: Isoquinoline Alkaloids TMC-120A and TMC-120B. Marine Drugs, 2019, 17, 607.	4.6	21
38	Cyclopiamines C and D: Epoxide Spiroindolinone Alkaloids from <i>Penicillium</i> sp. CML 3020. Journal of Natural Products, 2018, 81, 785-790.	3.0	21
39	Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Scientific Reports, 2018, 8, 1190.	3.3	41
40	Linking secondary metabolites to gene clusters through genome sequencing of six diverse <i>Aspergillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E753-E761.	7.1	126
41	On the biosynthetic origin of carminic acid. Insect Biochemistry and Molecular Biology, 2018, 96, 51-61.	2.7	12
42	Development of a LC-MS/MS method for the quantification of goniodomins A and B and its application to Alexandrium pseudogonyaulax strains and plankton field samples of Danish coastal waters. Toxicon, 2018, 155, 51-60.	1.6	20
43	Uncovering secondary metabolite evolution and biosynthesis using gene cluster networks and genetic dereplication. Scientific Reports, 2018, 8, 17957.	3.3	33
44	Identification of the decumbenone biosynthetic gene cluster in Penicillium decumbens and the importance for production of calbistrin. Fungal Biology and Biotechnology, 2018, 5, 18.	5.1	23
45	Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied Microbiology and Biotechnology, 2018, 102, 9481-9515.	3.6	213
46	Genetic Characterization of Neosartorin Biosynthesis Provides Insight into Heterodimeric Natural Product Generation. Organic Letters, 2018, 20, 7197-7200.	4.6	43
47	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, 2018, 50, 1688-1695.	21.4	160
48	Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nature Communications, 2018, 9, 2587.	12.8	85
49	Karmitoxin: An Amine-Containing Polyhydroxy-Polyene Toxin from the Marine Dinoflagellate Karlodinium armiger. Journal of Natural Products, 2017, 80, 1287-1293.	3.0	34
50	Characterization of a membrane-bound C-glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa. Nature Communications, 2017, 8, 1987.	12.8	15
51	Biodiversity of mycobiota throughout the Brazil nut supply chain: From rainforest to consumer. Food Microbiology, 2017, 61, 14-22.	4.2	20
52	Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biology and Biotechnology, 2017, 4, 8.	5.1	26
53	A Dereplication and Bioguided Discovery Approach to Reveal New Compounds from a Marine-Derived Fungus Stilbella fimetaria. Marine Drugs, 2017, 15, 253.	4.6	24
54	HPLC-HRMS Quantification of the Ichthyotoxin Karmitoxin from Karlodinium armiger. Marine Drugs, 2017, 15, 278.	4.6	8

#	Article	IF	Citations
55	Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9. PLoS ONE, 2017, 12, e0169712.	2.5	74
56	Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering. PLoS ONE, 2016, 11, e0161199.	2.5	30
57	Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus. PLoS ONE, 2016, 11, e0168305.	2.5	53
58	Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Scientific Reports, 2016, 6, 26206.	3.3	60
59	Chemodiversity of Ladder-Frame Prymnesin Polyethers in <i>Prymnesium parvum</i> . Journal of Natural Products, 2016, 79, 2250-2256.	3.0	47
60	Chemical Diversity, Origin, and Analysis of Phycotoxins. Journal of Natural Products, 2016, 79, 662-673.	3.0	49
61	Investigation of a 6â€MSA Synthase Gene Cluster in <i>Aspergillus aculeatus</i> Reveals 6â€MSAâ€derived Aculinic Acid, Aculins A–B and Epiâ€Aculinâ€A. ChemBioChem, 2015, 16, 2200-2204.	2.6	20
62	Dereplication-guided isolation of depsides thielavins Sâ \in "T and lecanorins Dâ \in "F from the endophytic fungus Setophoma sp Phytochemistry, 2015, 111, 154-162.	2.9	15
63	Aspiperidine oxide, a piperidine N-oxide from the filamentous fungus Aspergillus indologenus. Tetrahedron Letters, 2015, 56, 1847-1850.	1.4	5
64	The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Frontiers in Microbiology, 2015, 6, 71.	3.5	69
65	Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius. Journal of Antibiotics, 2015, 68, 603-608.	2.0	16
66	Chemodiversity in the genus Aspergillus. Applied Microbiology and Biotechnology, 2015, 99, 7859-7877.	3.6	102
67	Characterization of four new antifungal yanuthones from Aspergillus niger. Journal of Antibiotics, 2015, 68, 201-205.	2.0	26
68	Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Frontiers in Microbiology, 2015, 6, 1485.	3.5	66
69	Formation of Sclerotia and Production of Indoloterpenes by Aspergillus niger and Other Species in Section Nigri. PLoS ONE, 2014, 9, e94857.	2.5	56
70	Dereplication Guided Discovery of Secondary Metabolites of Mixed Biosynthetic Origin from Aspergillus aculeatus. Molecules, 2014, 19, 10898-10921.	3.8	38
71	Prymnesium parvum revisited: Relationship between allelopathy, ichthyotoxicity, and chemical profiles in 5 strains. Aquatic Toxicology, 2014, 157, 159-166.	4.0	39
72	Aggressive dereplication using UHPLC–DAD–QTOF: screening extracts for up to 3000 fungal secondary metabolites. Analytical and Bioanalytical Chemistry, 2014, 406, 1933-1943.	3.7	126

#	Article	IF	Citations
73	Molecular and Chemical Characterization of the Biosynthesis of the 6-MSA-Derived Meroterpenoid Yanuthone D in Aspergillus niger. Chemistry and Biology, 2014, 21, 519-529.	6.0	84
74	Isolation, Structural Analyses and Biological Activity Assays against Chronic Lymphocytic Leukemia of Two Novel Cytochalasins — Sclerotionigrin A and B. Molecules, 2014, 19, 9786-9797.	3.8	11
75	Accurate Dereplication of Bioactive Secondary Metabolites from Marine-Derived Fungi by UHPLC-DAD-QTOFMS and a MS/HRMS Library. Marine Drugs, 2014, 12, 3681-3705.	4.6	123
76	Solonamide B Inhibits Quorum Sensing and Reduces Staphylococcus aureus Mediated Killing of Human Neutrophils. PLoS ONE, 2014, 9, e84992.	2.5	97
77	A Mild Method for Regioselective Labeling of Aromatics with Radioactive Iodine. European Journal of Organic Chemistry, 2013, 2013, 3970-3973.	2.4	10
78	Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E99-107.	7.1	211
79	Atlantinone A, a Meroterpenoid Produced by Penicillium ribeum and Several Cheese Associated Penicillium Species. Metabolites, 2012, 2, 214-220.	2.9	17
80	Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357). Metabolites, 2012, 2, 39-56.	2.9	66
81	Genetics of Polyketide Metabolism in Aspergillus nidulans. Metabolites, 2012, 2, 100-133.	2.9	37
82	Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains. PLoS ONE, 2011, 6, e23496.	2.5	172
83	Isolation and NMR Characterization of Fumonisin B ₂ and a New Fumonisin B ₆ from <i>Aspergillus niger</i> Journal of Agricultural and Food Chemistry, 2010, 58, 949-953.	5.2	100
84	Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry, 2009, 395, 1225-1242.	3.7	266
85	Metabolomics of <i>Aspergillus fumigatus</i> . Medical Mycology, 2009, 47, S53-S71.	0.7	130
86	Novofumigatonin, a New Orthoester Meroterpenoid from <i>Aspergillus novofumigatus</i> . Organic Letters, 2008, 10, 401-404.	4.6	38
87	Fumonisin B ₂ Production by Aspergillus niger. Journal of Agricultural and Food Chemistry, 2007, 55, 9727-9732.	5.2	319
88	Production of mycotoxins by Aspergillus lentulus and other medically important and closely related species in section Fumigati. Medical Mycology, 2007, 45, 225-232.	0.7	50
89	epi-Aszonalenins A, B, and C from Aspergillus novofumigatus. Tetrahedron Letters, 2006, 47, 6099-6102.	1.4	36
90	Janoxepin and brevicompanine B: antiplasmodial metabolites from the fungus Aspergillus janus. Tetrahedron, 2005, 61, 8718-8721.	1.9	50

#	Article	IF	Citations
91	Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Current Opinion in Biotechnology, 2005, 16, 231-238.	6.6	226
92	Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology (United Kingdom), 2005, 151, 1325-1340.	1.8	425
93	UVâ€Guided Isolation of Fungal Metabolites by HSCCC. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 2029-2039.	1.0	5
94	Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Natural Product Reports, 2005, 22, 672.	10.3	194
95	Discovery of New Natural Products by Application ofX-hitting, a Novel Algorithm for Automated Comparison of Full UV Spectra, Combined with Structural Determination by NMR Spectroscopy. Journal of Natural Products, 2005, 68, 871-874.	3.0	47
96	Chemical characterisation of cheese associated fungi. Mycotoxin Research, 2000, 16, 109-112.	2.3	3
97	Dichlorodiaportin, Diaportinol, and Diaportinic Acid:Â Three Novel Isocoumarins fromPenicillium nalgiovense. Journal of Natural Products, 1999, 62, 1182-1184.	3.0	89
98	UV-Guided Isolation of Alantrypinone, a NovelPenicilliumAlkaloid. Journal of Natural Products, 1998, 61, 1154-1157.	3.0	75
99	Mycotoxin production byPenicillium expansumon blackcurrant and cherry juice. Food Additives and Contaminants, 1998, 15, 671-675.	2.0	36
100	Classification of Species in the GenusPenicilliumby Curie Point Pyrolysis/Mass Spectrometry Followed by Multivariate Analysis and Artificial Neural Networks. Journal of Mass Spectrometry, 1996, 31, 1422-1428.	1.6	17