MarÃ-a Soledad VÃ;squez-Murrieta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005743/publications.pdf

Version: 2024-02-01

MarÃa Soledad

#	Article	IF	CITATIONS
1	To split or not to split: an opinion on dividing the genus Burkholderia. Annals of Microbiology, 2016, 66, 1303-1314.	2.6	90
2	C andÂN mineralization andÂmicrobial biomass inÂheavy-metal contaminated soil. European Journal of Soil Biology, 2006, 42, 89-98.	3.2	75
3	Plant Growth-Promoting Traits in Rhizobacteria of Heavy Metal-Resistant Plants and Their Effects on Brassica nigra Seed Germination. Pedosphere, 2017, 27, 511-526.	4.0	71
4	Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon) Tj ETQq0 0 0 rgB 2013, 104, 1063-1071.	T /Overloo 1.7	ck 10 Tf 50 6 60
5	Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresource Technology, 2010, 101, 3864-3869.	9.6	59
6	Prediction of total fat, fatty acid composition and nutritional parameters in fish fillets using MID-FTIR spectroscopy and chemometrics. LWT - Food Science and Technology, 2013, 52, 12-20.	5.2	54
7	Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico. Science of the Total Environment, 2012, 431, 237-244.	8.0	53
8	Incorporation of bean plant residue in soil with different agricultural practices and its effect on the soil bacteria. Applied Soil Ecology, 2017, 119, 417-427.	4.3	40
9	Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 398-406.	1.7	40
10	Plant growth-promoting bacteria isolated from wild legume nodules and nodules of Phaseolus vulgaris L. trap plants in central and southern Mexico. Microbiological Research, 2020, 239, 126522.	5.3	34
11	Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants. Archives of Microbiology, 2016, 198, 941-956.	2.2	30
12	lsolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils. Canadian Journal of Microbiology, 2016, 62, 307-319.	1.7	30
13	Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Microbiological Research, 2020, 230, 126347.	5.3	29
14	Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Archives of Microbiology, 2018, 200, 883-895.	2.2	27
15	Nitrous oxide production of heavy metal contaminated soil. Soil Biology and Biochemistry, 2006, 38, 931-940.	8.8	26
16	Cupriavidus plantarum sp. nov., a plant-associated species. Archives of Microbiology, 2014, 196, 811-817.	2.2	26
17	Relationship between the elemental composition of grapeyards and bioactive compounds in the Cabernet Sauvignon grapes Vitis vinÃfera harvested in Mexico. Food Chemistry, 2016, 203, 79-85.	8.2	24
18	Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere. Microbiology (United Kingdom), 2018, 164, 1072-1086.	1.8	24

MARÃA SOLEDAD

#	Article	IF	CITATIONS
19	Microbial biomass C measurements in soil of the central highlands of Mexico. Applied Soil Ecology, 2007, 35, 432-440.	4.3	21
20	Diverse cellulolytic bacteria isolated from the high humus, alkaline-saline chinampa soils. Annals of Microbiology, 2013, 63, 779-792.	2.6	21
21	Inorganic N dynamics and N2O production from tannery effluents irrigated soil under different water regimes and fertilizer application rates: A laboratory study. Applied Soil Ecology, 2008, 38, 279-288.	4.3	20
22	Kocuria arsenatis sp. nov., an arsenic-resistant endophytic actinobacterium associated with Prosopis laegivata grown on high-arsenic-polluted mine tailing. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1027-1033.	1.7	20
23	Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils. International Journal of Environmental Science and Technology, 2011, 8, 807-816.	3.5	19
24	Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Food Chemistry, 2021, 344, 128608.	8.2	19
25	Paraburkholderia lycopersici sp. nov., a nitrogen-fixing species isolated from rhizoplane of Lycopersicon esculentum Mill. var. Saladette in Mexico. Systematic and Applied Microbiology, 2020, 43, 126133.	2.8	17
26	Diversity of fungal endophytes from the medicinal plant Dendropanax arboreus in a protected area of Mexico. Annals of Microbiology, 2016, 66, 991-1002.	2.6	13
27	Temporal analysis of the microbial communities in a nitrate-contaminated aquifer and the co-occurrence of anammox, n-damo and nitrous-oxide reducing bacteria. Journal of Contaminant Hydrology, 2020, 234, 103657.	3.3	13
28	Brevibacterium metallicus sp. nov., an endophytic bacterium isolated from roots of Prosopis laegivata grown at the edge of a mine tailing in Mexico. Archives of Microbiology, 2015, 197, 1151-1158.	2.2	12
29	Paenibacillus polymyxa NMA1017 as a potential biocontrol agent of Phytophthora tropicalis, causal agent of cacao black pod rot in Chiapas, Mexico. Antonie Van Leeuwenhoek, 2021, 114, 55-68.	1.7	12
30	Heavy-metal resistance mechanisms developed by bacteria from Lerma–Chapala basin. Archives of Microbiology, 2021, 203, 1807-1823.	2.2	12
31	Cupriavidus agavae sp. nov., a species isolated from Agave L. rhizosphere in northeast Mexico. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4165-4170.	1.7	11
32	An endophytic Kocuria palustris strain harboring multiple arsenate reductase genes. Archives of Microbiology, 2019, 201, 1285-1293.	2.2	9
33	Isolation of Moderately Halophilic Bacteria in Saline Environments of Sonora State Searching for Proteolytic Hydrolases. Open Agriculture, 2018, 3, 207-213.	1.7	6
34	Morphological and molecular identification of <i>Phytophthora tropicalis</i> causing black pod rot in Mexico. Canadian Journal of Plant Pathology, 2021, 43, 670-679.	1.4	4
35	Metallophores production by bacteria isolated from heavy metal-contaminated soil and sediment at Lerma–Chapala Basin. Archives of Microbiology, 2022, 204, 180.	2.2	3
36	Nitrous Oxide Emissions from Soils of the Semi-Arid Highlands of Durango, Mexico: A Laboratory Study. Arid Land Research and Management, 2008, 22, 179-194.	1.6	2

MARÃA SOLEDAD

#	Article	IF	CITATIONS
37	Arsenic and chromium resistance mechanisms in the Micrococcus luteus group. Pedosphere, 2023, 33, 600-611.	4.0	2
38	Adsorption and native microbiota of an agricultural soil are involved in the removal of fluoranthene. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	1
39	Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. 3 Biotech, 2020, 10, 242.	2.2	1
40	Assisted Phytoextraction of Arsenic and Cadmium by the Addition of Chemical Amendments and their Effect on Nutrient Ionome in Sedum praealtum Plants. International Journal of Sciences, 2018, 4, 77-87.	0.0	0