Julie A Kauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005573/publications.pdf

Version: 2024-02-01

70 papers

9,004 citations

94269 37 h-index 62 g-index

78 all docs

78 docs citations

times ranked

78

7732 citing authors

#	Article	IF	CITATIONS
1	Somatodendritic Release of Cholecystokinin Potentiates GABAergic Synapses Onto Ventral Tegmental Area Dopamine Cells. Biological Psychiatry, 2023, 93, 197-208.	0.7	9
2	Selective control of synaptically-connected circuit elements by all-optical synapses. Communications Biology, 2022, 5, 33.	2.0	14
3	Hyperexcitable arousal circuits drive sleep instability during aging. Science, 2022, 375, eabh3021.	6.0	74
4	Adolescent sleep shapes social novelty preference in mice. Nature Neuroscience, 2022, 25, 912-923.	7.1	33
5	Periaqueductal Gray and Rostromedial Tegmental Inhibitory Afferents to VTA Have Distinct Synaptic Plasticity and Opiate Sensitivity. Neuron, 2020, 106, 624-636.e4.	3.8	28
6	Endogenous Opsin 3 (OPN3) Protein Expression in the Adult Brain Using a Novel OPN3-mCherry Knock-In Mouse Model. ENeuro, 2020, 7, ENEURO.0107-20.2020.	0.9	13
7	Properties of neurons in the superficial laminae of trigeminal nucleus caudalis. Physiological Reports, 2019, 7, e14112.	0.7	9
8	NMDA receptor activation induces long-term potentiation of glycine synapses. PLoS ONE, 2019, 14, e0222066.	1.1	8
9	Two-Pronged Control of the Dorsal Raphe by the VTA. Neuron, 2019, 101, 553-555.	3.8	2
10	Synaptic Plasticity at Inhibitory Synapses in the Ventral Tegmental Area Depends upon Stimulation Site. ENeuro, 2019, 6, ENEURO.0137-19.2019.	0.9	4
11	NMDA receptor activation induces long-term potentiation of glycine synapses. , 2019, 14, e0222066.		O
12	NMDA receptor activation induces long-term potentiation of glycine synapses., 2019, 14, e0222066.		0
13	NMDA receptor activation induces long-term potentiation of glycine synapses. , 2019, 14, e0222066.		O
14	NMDA receptor activation induces long-term potentiation of glycine synapses., 2019, 14, e0222066.		0
15	Synaptic function and plasticity in identified inhibitory inputs onto <scp>VTA</scp> dopamine neurons. European Journal of Neuroscience, 2018, 47, 1208-1218.	1.2	41
16	Persistent but Labile Synaptic Plasticity at Excitatory Synapses. Journal of Neuroscience, 2018, 38, 5750-5758.	1.7	11
17	Long-Term Depression Induced by Optogenetically Driven Nociceptive Inputs to Trigeminal Nucleus Caudalis or Headache Triggers. Journal of Neuroscience, 2018, 38, 7529-7540.	1.7	9
18	Constitutive activation of kappa opioid receptors at ventral tegmental area inhibitory synapses following acute stress. ELife, 2017, 6, .	2.8	36

#	Article	IF	Citations
19	Three-Dimensional Neural Spheroid Culture: An <i>In Vitro</i> Model for Cortical Studies. Tissue Engineering - Part C: Methods, 2015, 21, 1274-1283.	1.1	111
20	Yin and Yang: Unsilencing Synapses to Control Cocaine Seeking. Neuron, 2014, 83, 1234-1236.	3.8	0
21	Stress and <scp>VTA</scp> synapses: implications for addiction and depression. European Journal of Neuroscience, 2014, 39, 1179-1188.	1.2	111
22	Long-term potentiation of glycinergic synapses triggered by interleukin $1\hat{1}^2$. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8263-8268.	3.3	50
23	Poststress Block of Kappa Opioid Receptors Rescues Long-Term Potentiation of Inhibitory Synapses and Prevents Reinstatement of Cocaine Seeking. Biological Psychiatry, 2014, 76, 785-793.	0.7	57
24	Christianson Syndrome Protein NHE6 Modulates TrkB Endosomal Signaling Required for Neuronal Circuit Development. Neuron, 2013, 80, 97-112.	3.8	127
25	Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity. Neuron, 2013, 77, 942-954.	3.8	105
26	Loss of interneuron LTD and attenuated pyramidal cell LTP in <i>Trpv1</i> and <i>Trpv3</i> KO mice. Hippocampus, 2013, 23, 662-671.	0.9	43
27	A novel non B1/TRPV1 endocannabinoidâ€mediated mechanism depresses excitatory synapses on hippocampal CA1 interneurons. Hippocampus, 2012, 22, 209-221.	0.9	32
28	PDZ binding of TARP $\hat{1}^3$ -8 controls synaptic transmission but not synaptic plasticity. Nature Neuroscience, 2011, 14, 1410-1412.	7.1	59
29	Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. European Journal of Neuroscience, 2010, 32, 108-117.	1.2	110
30	Presynaptic plasticity: targeted control of inhibitory networks. Current Opinion in Neurobiology, 2009, 19, 254-262.	2.0	64
31	Plasticity of Addiction: A Mesolimbic Dopamine Shortâ€Circuit?. American Journal on Addictions, 2009, 18, 259-271.	1.3	32
32	PKG and PKA Signaling in LTP at GABAergic Synapses. Neuropsychopharmacology, 2009, 34, 1829-1842.	2.8	64
33	Hot flash: TRPV channels in the brain. Trends in Neurosciences, 2009, 32, 215-224.	4.2	208
34	LTP of GABAergic synapses in the ventral tegmental area and beyond. Journal of Physiology, 2008, 586, 1487-1493.	1.3	72
35	TRPV1 Channels Mediate Long-Term Depression atÂSynapses on Hippocampal Interneurons. Neuron, 2008, 57, 746-759.	3.8	353
36	Myosin Vb Mobilizes Recycling Endosomes and AMPA Receptors for Postsynaptic Plasticity. Cell, 2008, 135, 535-548.	13.5	425

#	Article	IF	CITATIONS
37	High-Frequency Afferent Stimulation Induces Long-Term Potentiation of Field Potentials in the Ventral Tegmental Area. Neuropsychopharmacology, 2008, 33, 1704-1712.	2.8	26
38	TRPV1: hot new channels in the brain. Future Neurology, 2008, 3, 507-510.	0.9	0
39	Amphetamine depresses excitatory synaptic transmission at prefrontal cortical layer ${\tt V}$ synapses. Neuropharmacology, 2007, 52, 193-199.	2.0	20
40	Synaptic plasticity and addiction. Nature Reviews Neuroscience, 2007, 8, 844-858.	4.9	1,402
41	Opioids block long-term potentiation of inhibitory synapses. Nature, 2007, 446, 1086-1090.	13.7	281
42	LTP: AMPA receptors trading places. Nature Neuroscience, 2006, 9, 593-594.	7.1	23
43	A home for the nicotine habit. Nature, 2005, 436, 31-32.	13.7	7
44	Inhibitory synapses turn exciting. Nature Neuroscience, 2005, 8, 257-258.	7.1	0
45	Rapid Synaptic Plasticity of Glutamatergic Synapses on Dopamine Neurons in the Ventral Tegmental Area in Response to Acute Amphetamine Injection. Neuropsychopharmacology, 2004, 29, 2115-2125.	2.8	326
46	Repeated exposure to amphetamine disrupts dopaminergic modulation of excitatory synaptic plasticity and neurotransmission in nucleus accumbens. Synapse, 2004, 51, 1-10.	0.6	59
47	Learning Mechanisms in Addiction: Synaptic Plasticity in the Ventral Tegmental Area as a Result of Exposure to Drugs of Abuse. Annual Review of Physiology, 2004, 66, 447-475.	5.6	203
48	Recycling Endosomes Supply AMPA Receptors for LTP. Science, 2004, 305, 1972-1975.	6.0	644
49	Rapid AMPAR/NMDAR Response to Amphetamine. Annals of the New York Academy of Sciences, 2003, 1003, 391-394.	1.8	17
50	Addictive Drugs and Stress Trigger a Common Change at VTA Synapses. Neuron, 2003, 37, 549-550.	3.8	25
51	Novel Protein Kinase A-Dependent Long-Term Depression of Excitatory Synapses. Neuron, 2002, 36, 921-931.	3.8	315
52	Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Current Biology, 2000, 10, 1607-1610.	1.8	48
53	Amphetamine Blocks Long-Term Synaptic Depression in the Ventral Tegmental Area. Journal of Neuroscience, 2000, 20, 5575-5580.	1.7	138
54	Blockade of Hippocampal Long-Term Potentiation by Sustained Tetanic Stimulation Near the Recording Site. Journal of Neurophysiology, 1999, 81, 940-944.	0.9	16

#	Article	IF	CITATIONS
55	Amphetamine Depresses Excitatory Synaptic Transmission via Serotonin Receptors in the Ventral Tegmental Area. Journal of Neuroscience, 1999, 19, 9780-9787.	1.7	98
56	Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors. Nature Neuroscience, 1998, 1, 119-123.	7.1	99
57	Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15026-15031.	3.3	107
58	Functionally Distinct Groups of Interneurons Identified During Rhythmic Carbachol Oscillations in HippocampusIn Vitro. Journal of Neuroscience, 1998, 18, 5640-5651.	1.7	47
59	Hippocampal Interneurons Express a Novel Form of Synaptic Plasticity. Neuron, 1997, 18, 295-305.	3.8	171
60	Hippocampal Interneurons Are Excited Via Serotonin-Gated Ion Channels. Journal of Neurophysiology, 1997, 78, 2493-2502.	0.9	131
61	Properties of Carbachol-Induced Oscillatory Activity in Rat Hippocampus. Journal of Neurophysiology, 1997, 78, 2631-2640.	0.9	156
62	Whole-Cell Patch-Clamp Recording Reveals Subthreshold Sound-Evoked Postsynaptic Currents in the Inferior Colliculus of Awake Bats. Journal of Neuroscience, 1996, 16, 3009-3018.	1.7	223
63	Metabotropic glutamate receptor-induced disinhibition is mediated by reduced transmission at excitatory synapses onto interneurons and inhibitory synapses onto pyramidal cells. Neuroscience Letters, 1994, 181, 78-82.	1.0	60
64	Postsynaptic Mechanisms Involved in Long-Term Potentiation. Advances in Experimental Medicine and Biology, 1990, 268, 291-299.	0.8	5
65	Long-term potentiation in the hippocampus. Progress in Cell Research, 1990, 1, 263-277.	0.3	6
66	An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 1989, 340, 554-557.	13.7	1,079
67	MECHANISMS INVOLVED IN THE INITIATION AND EXPRESSION OF LONG TERM POTENTIATION. , 1989, , 159-170.		O
68	NMDA application potentiates synaptic transmission in the hippocampus. Nature, 1988, 334, 250-252.	13.7	462
69	A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron, 1988, 1, 911-917.	3.8	472
70	Neural control of hatching: Role of neck position in turning on hatching leg movements in post-hatching chicks. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982, 145, 497-504.	0.7	22