Beata Mysliwa-Kurdziel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis. Frontiers in Plant Science, 2021, 12, 663309.	3.6	10
2	Dynamics of Etiolation Monitored by Seedling Morphology, Carotenoid Composition, Antioxidant Level, and Photoactivity of Protochlorophyllide in Arabidopsis thaliana. Frontiers in Plant Science, 2021, 12, 772727.	3.6	1
3	The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms. Biochemical Journal, 2020, 477, 2221-2236.	3.7	14
4	Spectroscopic and theoretical investigation into substituent- and aggregation-related dual fluorescence effects in the selected 2-amino-1,3,4-thiadiazoles. Journal of Molecular Liquids, 2019, 291, 111261.	4.9	17
5	Chlorophylls c—Occurrence, synthesis, properties, photosynthetic and evolutionary significance. Advances in Botanical Research, 2019, , 91-119.	1.1	3
6	Heavy-metal tolerance of photobiont in pioneer lichens inhabiting heavily polluted sites. Science of the Total Environment, 2019, 679, 260-269.	8.0	14
7	Non-Typical Fluorescence Effects and Biological Activity in Selected 1,3,4-thiadiazole Derivatives: Spectroscopic and Theoretical Studies on Substituent, Molecular Aggregation, and pH Effects. International Journal of Molecular Sciences, 2019, 20, 5494.	4.1	15
8	The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS ONE, 2018, 13, e0194678.	2.5	28
9	MGDG, PG and SQDG regulate the activity of light-dependent protochlorophyllide oxidoreductase. Biochemical Journal, 2017, 474, 1307-1320.	3.7	29
10	Phycobilins and Phycobiliproteins Used in Food Industry and Medicine. Mini-Reviews in Medicinal Chemistry, 2017, 17, 1173-1193.	2.4	58
11	Chlorophylls and their Derivatives Used in Food Industry and Medicine. Mini-Reviews in Medicinal Chemistry, 2017, 17, 1194-1222.	2.4	72
12	Determination of norflurazon concentration in wheat leaves using a modified QuEChERS method. Acta Biochimica Polonica, 2017, 64, 431-436.	0.5	0
13	Insight into the oligomeric structure of PORA from A. thaliana. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1757-1764.	2.3	12
14	Photoactive Protochlorophyllide-Enzyme Complexes Reconstituted with PORA, PORB and PORC Proteins of A. thaliana: Fluorescence and Catalytic Properties. PLoS ONE, 2015, 10, e0116990.	2.5	37
15	Light-Dependent Protochlorophyllide Oxidoreductase: Phylogeny, Regulation, and Catalytic Properties. Biochemistry, 2015, 54, 5255-5262.	2.5	100
16	Influence of Solvent Polarizability on the Keto-Enol Equilibrium in 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol. Journal of Fluorescence, 2015, 25, 1867-1874.	2.5	24
17	Protochlorophyllide and protochlorophyll in model membranes — An influence of hydrophobic side chain moiety. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1075-1082.	2.6	3
18	Binding of new cationic porphyrin–tetrapeptide conjugates to nucleoprotein complexes. Biophysical Chemistry, 2013, 177-178, 14-23.	2.8	7

BEATA MYSLIWA-KURDZIEL

#	Article	IF	CITATIONS
19	Visualization and characterization of prolamellar bodies with atomic force microscopy. Journal of Plant Physiology, 2013, 170, 1217-1227.	3.5	25
20	Protochlorophyllide in model systems — An approach to in vivo conditions. Biophysical Chemistry, 2013, 175-176, 28-38.	2.8	10
21	Photoinduction of Seed Germination in Arabidopsis Thaliana is Modulated by Phototropins. Acta Biologica Cracoviensia Series Botanica, 2013, 55, .	0.5	3
22	Protochlorophyllide Forms in Etiolated Seedlings of Photoreceptor Mutants of Arabidopsis Thaliana — Is Chlorophyll Biosynthesis Controlled by Cooperation between Phytochromes and Phototropins?. Advanced Topics in Science and Technology in China, 2013, , 381-384.	0.1	1
23	Light-dependent and light-independent protochlorophyllide oxidoreductases share similar sequence motifs -in silico studies. Photosynthetica, 2012, 50, 529-540.	1.7	22
24	Cadmium inhibitory action leads to changes in structure of ferredoxin:NADP+ oxidoreductase. Journal of Biological Physics, 2012, 38, 415-428.	1.5	3
25	Initial Stages of Angiosperm Greening Monitored by Low-Temperature Fluorescence Spectra and Fluorescence Lifetimes. Methods in Molecular Biology, 2012, 875, 231-239.	0.9	1
26	Variations in xanthophyll composition in etiolated seedlings of Arabidopsis thaliana correlate with protochlorophyllide accumulation Acta Biochimica Polonica, 2012, 59, .	0.5	3
27	Variations in xanthophyll composition in etiolated seedlings of Arabidopsis thaliana correlate with protochlorophyllide accumulation. Acta Biochimica Polonica, 2012, 59, 57-60.	0.5	1
28	Syntheses and DNA binding of new cationic porphyrin–tetrapeptide conjugates. Biophysical Chemistry, 2011, 155, 36-44.	2.8	33
29	Molecular organization of antifungal antibiotic amphotericin B in lipid monolayers studied by means of Fluorescence Lifetime Imaging Microscopy. Biophysical Chemistry, 2009, 143, 95-101.	2.8	24
30	Solvent effects on fluorescence properties of protochlorophyll and its derivatives with various porphyrin side chains. European Biophysics Journal, 2008, 37, 1185-1193.	2.2	26
31	Understanding chlorophylls: Central magnesium ion and phytyl as structural determinants. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1491-1500.	1.0	117
32	Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100. Journal of Photochemistry and Photobiology B: Biology, 2007, 86, 262-271.	3.8	4
33	Origin of Chlorophyll Fluorescence in Plants at 55-75°C¶. Photochemistry and Photobiology, 2007, 77, 68-76.	2.5	2
34	Fluorescence Lifetimes of Protochlorophyllide in Plants with Different Proportions of Short-wavelength and Long-wavelength Protochlorophyllide Spectral Forms¶. Photochemistry and Photobiology, 2007, 78, 205-212.	2.5	8
35	Fluorescence Lifetimes Study of α-Tocopherol and Biological Prenylquinols in Organic Solvents and Model Membranes. Photochemistry and Photobiology, 2006, 82, 1309.	2.5	18
36	Disintegration of the Prolamellar Body Structure at High Concentrations of Hg2+. Plant Biology, 2006, 8, 627-635.	3.8	17

#	Article	IF	CITATIONS
37	Influence of Cd(II), Cr(VI) and Fe(III) on early steps of deetiolation process in wheat: fluorescence spectral changes of protochlorophyllide and newly formed chlorophyllide. Agriculture, Ecosystems and Environment, 2005, 106, 199-207.	5.3	27
38	Fluorescence Lifetimes and Spectral Properties of Protochlorophyllide in Organic Solvents in Relation to the Respective Parameters <i>In Vivo¶</i> . Photochemistry and Photobiology, 2004, 79, 62-67.	2.5	19
39	Hg2+Reacts with Different Components of the NADPH: Protochlorophyllide Oxidoreductase Macrodomains. Plant Biology, 2004, 6, 358-368.	3.8	30
40	Separation of Monovinyl and Divinyl Protochlorophyllides Using C30 Reverse Phase High Performance Liquid Chromatography Column: Analytical and Preparative Applications. Chromatographia, 2004, 60, .	1.3	23
41	Fluorescence Lifetimes and Spectral Properties of Protochlorophyllide in Organic Solvents in Relation to the Respective Parameters In Vivo¶. Photochemistry and Photobiology, 2004, 79, 62.	2.5	14
42	Fluorescence lifetimes and spectral properties of protochlorophyllide in organic solvents in relation to the respective parameters in vivo. Photochemistry and Photobiology, 2004, 79, 62-7.	2.5	7
43	Phytol as one of the determinants of chlorophyll interactions in solution. Photosynthesis Research, 2003, 78, 47-57.	2.9	56
44	Fluorescence Lifetimes of Protochlorophyllide in Plants with Different Proportions of Short-wavelength and Long-wavelength Protochlorophyllide Spectral Forms¶. Photochemistry and Photobiology, 2003, 78, 205.	2.5	26
45	Origin of Chlorophyll Fluorescence in Plants at 55–75°C¶. Photochemistry and Photobiology, 2003, 77, 68.	2.5	20
46	The influence of structure and redox state of prenylquinones on thermotropic phase behaviour of phospholipids in model membranes. Chemistry and Physics of Lipids, 2002, 114, 169-180.	3.2	26
47	Characterization of the natural chemical and osmotic environment of early wheat embryogenesis. Physiologia Plantarum, 1999, 107, 230-239.	5.2	10
48	Analysis of Fluorescence Lifetime of Protochlorophyllide and Chlorophyllide in Isolated Etioplast Membranes Measured from Multifrequency Cross-correlation Phase Fluorometry. Photochemistry and Photobiology, 1999, 70, 616-623.	2.5	21
49	Analysis of Fluorescence Lifetime of Protochlorophyllide and Chlorophyllide in Isolated Etioplast Membranes Measured from Multifrequency Cross-correlation Phase Fluorometry. Photochemistry and Photobiology, 1999, 70, 616.	2.5	13
50	Differential Scanning Calorimetry Investigation of Wheat Prolamellar Body Membranes. , 1998, , 3261-3264.		1
51	The Early Stages of Photosystem II Assembly Monitored by Measurements of Fluorescence Lifetime, Fluorescence Induction and Isoelectric Focusing of Chlorophyll-Proteins in Barley Etiochloroplasts. Plant and Cell Physiology, 1997, 38, 1187-1196.	3.1	26
52	Effect of xanthophyll pigments on fluorescence of chlorophyll a in LHC II embedded to liposomes. Journal of Photochemistry and Photobiology B: Biology, 1997, 37, 84-90.	3.8	27
53	Action of an Antiserum to a-Tocoquinone on Photosystem II-Particle Preparations of N icotiana tabacum. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1996, 51, 691-697.	1.4	3