Katja Röper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005395/publications.pdf

Version: 2024-02-01

33 papers 2,750 citations

393982 19 h-index 454577 30 g-index

40 all docs

40 docs citations

40 times ranked

2895 citing authors

#	Article	IF	CITATIONS
1	Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2000, 2, 582-592.	4.6	530
2	The Human AC133 Hematopoietic Stem Cell Antigen Is also Expressed in Epithelial Cells and Targeted to Plasma Membrane Protrusions. Journal of Biological Chemistry, 2000, 275, 5512-5520.	1.6	387
3	Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO Journal, 2004, 23, 2314-2324.	3.5	387
4	Prominin: A Story of Cholesterol, Plasma Membrane Protrusions and Human Pathology. Traffic, 2001, 2, 82-91.	1,3	274
5	The `Spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. Journal of Cell Science, 2002, 115, 4215-4225.	1.2	152
6	Anisotropy of Crumbs and aPKC Drives Myosin Cable Assembly during Tube Formation. Developmental Cell, 2012, 23, 939-953.	3.1	148
7	A Spectraplakin Is Enriched on the Fusome and Organizes Microtubules during Oocyte Specification in Drosophila. Current Biology, 2004, 14, 99-110.	1.8	93
8	A Dynamic Microtubule Cytoskeleton Directs Medial Actomyosin Function during Tube Formation. Developmental Cell, 2014, 29, 562-576.	3.1	92
9	Radially patterned cell behaviours during tube budding from an epithelium. ELife, 2018, 7, .	2.8	74
10	Sticking together the Crumbs â€" an unexpected function for an old friend. Nature Reviews Molecular Cell Biology, 2013, 14, 307-314.	16.1	68
11	Contribution of sequence variation in Drosophila actins to their incorporation into actin-based structures in vivo. Journal of Cell Science, 2005, 118, 3937-3948.	1.2	62
12	Supracellular actomyosin assemblies during development. Bioarchitecture, 2013, 3, 45-49.	1.5	62
13	Maintaining epithelial integrity. Journal of Cell Biology, 2003, 162, 1305-1315.	2.3	59
14	A spectraplakin is enriched on the fusome and organizes microtubules during oocyte specification in Drosophila. Current Biology, 2004, 14, 99-110.	1.8	50
15	Integration of Cell–Cell Adhesion and Contractile Actomyosin Activity During Morphogenesis. Current Topics in Developmental Biology, 2015, 112, 103-127.	1.0	45
16	Rho-Kinase Planar Polarization at Tissue Boundaries Depends on Phospho-regulation of Membrane Residence Time. Developmental Cell, 2020, 52, 364-378.e7.	3.1	38
17	Rtnl1 is enriched in a specialized germline ER that associates with ribonucleoprotein granule components. Journal of Cell Science, 2007, 120, 1081-1092.	1.2	37
18	Controlling cell shape changes during salivary gland tube formation in Drosophila. Seminars in Cell and Developmental Biology, 2014, 31, 74-81.	2.3	33

#	Article	IF	Citations
19	A Targeted Gain-of-Function Screen Identifies Genes Affecting Salivary Gland Morphogenesis/Tubulogenesis in Drosophila. Genetics, 2009, 181, 543-565.	1.2	25
20	The cytolinker Pigs is a direct target and a negative regulator of Notch signalling. Development (Cambridge), 2010, 137, 913-922.	1.2	22
21	The spectraplakin short stop is an essential microtubule regulator involved in epithelial closure in Drosophila. Journal of Cell Science, 2017, 130, 712-724.	1.2	22
22	Control of cell shape during epithelial morphogenesis: recent advances. Current Opinion in Genetics and Development, 2020, 63, 1-8.	1.5	20
23	Microtubules enter centre stage for morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190557.	1.8	11
24	A release-and-capture mechanism generates an essential non-centrosomal microtubule array during tube budding. Nature Communications, 2021, 12, 4096.	5.8	11
25	Alignment of cytoskeletal structures across cell boundaries generates tissue cohesion during organ formation. Current Opinion in Cell Biology, 2018, 55, 104-110.	2.6	10
26	Genetic Control of Salivary Gland Tubulogenesis in Drosophila. , 2016, , 125-149.		10
27	The Gas2 family protein Pigs is a microtubule +TIP that affects cytoskeleton organisation. Journal of Cell Science, 2016, 129, 121-34.	1.2	9
28	Mesenchymal-to-Epithelial Transitions in Development and Cancer. Methods in Molecular Biology, 2021, 2179, 43-62.	0.4	6
29	Correct regionalization of a tissue primordium is essential for coordinated morphogenesis. ELife, 2021, 10, .	2.8	4
30	Quantitative Imaging and the Effect of Tissue Topology on Morphogenesis. Developmental Cell, 2018, 47, 537-538.	3.1	2
31	"Neurâ€al brain wave: Coordinating epithelial-to-neural stem cell transition in the fly optic lobe. Journal of Cell Biology, 2020, 219, .	2.3	1
32	Squeezing out in a "tug of war― The role of myosin in neural stem cell delamination. Journal of Cell Biology, 2017, 216, 1215-1218.	2.3	0
33	The Gas2 family protein Pigs is a microtubule +TIP that affects cytoskeleton organisation. Development (Cambridge), 2016, 143, e1.1-e1.1.	1.2	0