Kazunari Yoshida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fully 3D-Printed Hydrogel Actuator for Jellyfish Soft Robots. ECS Journal of Solid State Science and Technology, 2021, 10, 037002.	1.8	30
2	Very Wide Sensing Range and Hysteresis Behaviors of Tactile Sensor Developed by Embedding Soft Ionic Gels in Soft Silicone Elastomers. ECS Journal of Solid State Science and Technology, 2020, 9, 061024.	1.8	16
3	Effect of dibucaine hydrochloride on raft-like lipid domains in model membrane systems. MedChemComm, 2015, 6, 1444-1451.	3.4	11
4	Influence of 3D-printing conditions on physical properties of hydrogel objects. Mechanical Engineering Journal, 2018, 5, 17-00538-17-00538.	0.4	11
5	Electric control of friction on surface of high-strength hydrogels. Microsystem Technologies, 2018, 24, 639-646.	2.0	10
6	Realâ€Time Observation of Liposome Bursting Induced by Acetonitrile. ChemPhysChem, 2014, 15, 2909-2912.	2.1	9
7	3D Printing of Tough Gels Having Tunable Elastic Modulus from the Same Pre el Solution. Macromolecular Chemistry and Physics, 2019, 220, 1800498.	2.2	9
8	Confinement Effects on Polymer Dynamics: Thermo-Responsive Behaviours of Hydroxypropyl Cellulose Polymers in Phospholipid-Coated Droplets (Water-in-Oil Emulsion). Polymers, 2017, 9, 680.	4.5	7
9	Enormously Low Frictional Surface on Tough Hydrogels Simply Created by Laser-Cutting Process. Technologies, 2018, 6, 82.	5.1	7
10	Acetonitrile-Induced Destabilization in Liposomes. Colloids and Interfaces, 2018, 2, 6.	2.1	7
11	Deformation of Lipid Membranes Containing Photoresponsive Molecules in Response to Ultraviolet Light. Journal of Physical Chemistry B, 2014, 118, 4115-4121.	2.6	6
12	Sliding Walk With Friction Control of Double-Network Gel on Feet of Inchworm Robot. Frontiers in Mechanical Engineering, 2019, 5, .	1.8	6
13	Dependence of stacking direction on mechanical properties of gels and plastics formed by 3D printing. Transactions of the JSME (in Japanese), 2017, 83, 16-00567-16-00567.	0.2	4
14	Antireflection in Green Lacewing Wings with Random Height Surface Protrusions. Langmuir, 2020, 36, 4207-4213.	3.5	4
15	(Invited) Formation of Liposomes Containing Pre-Gel Solution and 3D-Printing Applications by Droplet-Shooting Method. ECS Transactions, 2020, 98, 85-92.	0.5	3
16	Creation and Drive Evaluation of Jellyfish Type Autonomous Unmanned Submersible. ECS Transactions, 2018, 88, 45-49.	0.5	1
17	Behaviors of 3D-printed objects made of thermo-responsive hydrogels: motion in flow and molecule release ability. Microsystem Technologies, 2020, , 1.	2.0	1
18	Analysis of Surface Patterns and Electric Field Simulation of Antireflective Green Lacewing Wings. Langmuir, 2022, 38, 3098-3104.	3.5	1

Kazunari Yoshida

#	Article	IF	CITATIONS
19	Development of low viscosity gel material suitable for modeling with 3D gel printer and evaluation of mechanical properties. Transactions of the JSME (in Japanese), 2018, 84, 17-00459-17-00459.	0.2	0
20	Development of Soft Ion Gel Based Touch Sensor. ECS Transactions, 2018, 88, 59-67.	0.5	0
21	Modeling of Spherical Objects Using 3D Printing of Soft and Bio-Compatible Materials. ECS Transactions, 2018, 88, 217-222.	0.5	0
22	Perspective—A Robotic Actuation System Made of Artificial Cells and Gels. ECS Journal of Solid State Science and Technology, 2021, 10, 057005.	1.8	0
23	Aggregation of Water Molecules to Phospholipid Head Groups Accompanied with Separation into Water―and Polysaccharideâ€Rich Phases in Waterâ€inâ€Oil Emulsions. ChemistrySelect, 2021, 6, 5435-5440.	1.5	0
24	Development of polymer gel ring and evaluation of friction properties. The Proceedings of Mechanical Engineering Congress Japan, 2017, 2017, S1110302.	0.0	0
25	Friction Properties and Surface Observation By Surface Processing on High Strength Gels. ECS Meeting Abstracts, 2018, , .	0.0	0
26	3D Gel Printing for Jellyfish-Mimic Robot. ECS Meeting Abstracts, 2018, , .	0.0	0
27	3D Printing of Smart Gels. ECS Meeting Abstracts, 2018, , .	0.0	0
28	Thermo-Responsive Behavior of Polymer Solutions Coated with Phospholipids. ECS Meeting Abstracts, 2018, , .	0.0	0
29	Evaluation of Gel Touch Sensor. ECS Meeting Abstracts, 2018, , .	0.0	0
30	Development of separation device based on particle size of vesicles using margination. The Proceedings of the Materials and Processing Conference, 2018, 2018.26, 920.	0.0	0
31	Analysis of frequency accompanying change of moisture content of Ringing gel. The Proceedings of the Materials and Processing Conference, 2018, 2018.26, 917.	0.0	0
32	Modeling of Spherical Objects Using 3D Printing of Soft and Bio-Compatible Materials. ECS Meeting Abstracts, 2018, , .	0.0	0
33	Friction Properties of Gel Rings and Plates. ECS Meeting Abstracts, 2018, , .	0.0	0
34	Physical Properties of Hydrogel Objects By 3D-Printing. ECS Meeting Abstracts, 2018, , .	0.0	0
35	(Invited) 3D Printing of Gels for Soft-matter 3D Innovation. ECS Meeting Abstracts, 2018, , .	0.0	0
36	3D Printable Edible Actuator. ECS Meeting Abstracts, 2019, , .	0.0	0

Kazunari Yoshida

#	Article	IF	CITATIONS
37	Creation of 3D Print Gel Actuator. ECS Meeting Abstracts, 2019, , .	0.0	0
38	(Invited) Friction Processing and Application to High Strength Hydrogel Surface. ECS Meeting Abstracts, 2020, MA2020-02, 3708-3708.	0.0	0
39	(Invited) Formation of Liposomes Containing Pre-Gel Solution and 3D-Printing Applications by Droplet-Shooting Method. ECS Meeting Abstracts, 2020, MA2020-02, 3710-3710.	0.0	0
40	2D and 3D Control of Lipid Bilayer Membranes for Molecular Sensors. ECS Meeting Abstracts, 2020, MA2020-02, 3717-3717.	0.0	0
41	Numerical Estimation of Acetonitrile Adsorption into Simple Artificial Cell Membranes. ChemistrySelect, 2021, 6, 14013-14018.	1.5	0