Luis Cabedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005331/publications.pdf

Version: 2024-02-01

		196777	214428
74	2,773	29	50
papers	citations	h-index	g-index
76	76	76	3374
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Role of Plasticizers on PHB/bio-TPE Blends Compatibilized by Reactive Extrusion. Materials, 2022, 15, 1226.	1.3	6
2	Development and Characterization of Fully Renewable and Biodegradable Polyhydroxyalkanoate Blends with Improved Thermoformability. Polymers, 2022, 14, 2527.	2.0	16
3	In Service Performance of Toughened PHBV/TPU Blends Obtained by Reactive Extrusion for Injected Parts. Polymers, 2022, 14, 2337.	2.0	3
4	Effect of the Purification Treatment on the Valorization of Natural Cellulosic Residues as Fillers in PHB-Based Composites for Short Shelf Life Applications. Waste and Biomass Valorization, 2021, 12, 2541-2556.	1.8	14
5	Blends of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers, 2021, 13, 1155.	2.0	20
6	High-Oxygen-Barrier Multilayer Films Based on Polyhydroxyalkanoates and Cellulose Nanocrystals. Nanomaterials, 2021, 11, 1443.	1.9	17
7	Development and Characterization of Electrospun Fiber-Based Poly(ethylene-co-vinyl Alcohol) Films of Application Interest as High-Gas-Barrier Interlayers in Food Packaging. Polymers, 2021, 13, 2061.	2.0	9
8	Development and Characterization of Electrospun Biopapers of Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Derived from Cheese Whey with Varying 3-Hydroxyvalerate Contents. Biomacromolecules, 2021, 22, 2935-2953.	2.6	18
9	Barrier biopaper multilayers obtained by impregnation of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with protein and polysaccharide hydrocolloids. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100150.	1.6	3
10	Development of Active Barrier Multilayer Films Based on Electrospun Antimicrobial Hot-Tack Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Cellulose Nanocrystal Interlayers. Nanomaterials, 2020, 10, 2356.	1.9	26
11	Valorization of Municipal Biowaste into Electrospun Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Biopapers for Food Packaging Applications. ACS Applied Bio Materials, 2020, 3, 6110-6123.	2.3	21
12	Study of the Compatibilization Effect of Different Reactive Agents in PHB/Natural Fiber-Based Composites. Polymers, 2020, 12, 1967.	2.0	16
13	Development of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Frontiers in Nutrition, 2020, 7, 140.	1.6	38
14	Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids, 2020, 108, 106013.	5 . 6	49
15	Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. Nanomaterials, 2020, 10, 506.	1.9	29
16	New coloured coatings to enhance silica sand absorbance for direct particle solar receiver applications. Renewable Energy, 2020, 152, 1-8.	4.3	20
17	On the perceptions of students and professors in the implementation of an inter-university engineering PBL experience. European Journal of Engineering Education, 2019, 44, 726-744.	1.5	3
18	Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 2019, 12, 2152.	1.3	42

#	Article	IF	CITATIONS
19	Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly(ε-caprolactone) Films Containing a Solid Dispersion of Sage (Salvia officinalis L.) Extract. Nanomaterials, 2019, 9, 270.	1.9	48
20	Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 2019, 9, 227.	1.9	85
21	PHBV/TPU/cellulose compounds for compostable injection molded parts with improved thermal and mechanical performance. Journal of Applied Polymer Science, 2019, 136, 47257.	1.3	17
22	Effect of the addition of sepiolite on the morphology and properties of melt compounded PHBV/PLA blends. Polymer Composites, 2019, 40, E156.	2.3	23
23	Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Composites Part B: Engineering, 2018, 145, 215-225.	5.9	122
24	Antimicrobial nanocomposites and electrospun coatings based on poly(3â€hydroxybutyrateâ€ <i>co</i> âg€hydroxybutyrateâ€ <i>co</i> packaging and coating applications. Journal of Applied Polymer Science, 2018, 135, 45673.	1.3	95
25	Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiberâ€based food packaging applications. Journal of Applied Polymer Science, 2018, 135, 45501.	1.3	40
26	On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles. Scientific Reports, 2018, 8, 7532.	1.6	37
27	Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 2018, 17, 39-49.	3.3	56
28	Inorganic-Based Nanostructures and Their Use in Food Packaging. , 2018, , 13-45.		8
29	Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived From Fruit Pulp Biowaste. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	57
30	Toughness Enhancement of PHBV/TPU/Cellulose Compounds with Reactive Additives for Compostable Injected Parts in Industrial Applications. International Journal of Molecular Sciences, 2018, 19, 2102.	1.8	14
31	Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 2018, 8, 199.	1.9	68
32	University Social Responsibility towards Engineering Undergraduates: The Effect of Methodology on a Service-Learning Experience. Sustainability, 2018, 10, 1823.	1.6	48
33	Compatibilization of poly(3â€hydroxybutyrateâ€ <i>co</i> àê€3â€hydroxyvalerate)–poly(lactic acid) blends with diisocyanates. Journal of Applied Polymer Science, 2017, 134, .	1.3	30
34	Stabilization and characterization of a nanofluid based on a eutectic mixture of diphenyl and diphenyl oxide and carbon nanoparticles under high temperature conditions. International Journal of Heat and Mass Transfer, 2017, 113, 908-913.	2.5	14
35	Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1817-1830.	1.1	49
36	Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature. Scientific Reports, 2017, 7, 17580.	1.6	32

#	Article	IF	Citations
37	Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polymer Testing, 2017, 62, 235-245.	2.3	31
38	Development and characterization of unmodified kaolinite/EVOH nanocomposites by melt compounding. Applied Clay Science, 2017, 135, 300-306.	2.6	16
39	On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials, 2017, 7, 4.	1.9	51
40	New High-Temperature Heat Transfer and Thermal Storage Molten Salt–Based Nanofluids. , 2017, , 287-304.		2
41	On the use of tris(nonylphenyl) phosphite as a chain extender in meltâ€blended poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate)/clay nanocomposites: Morphology, thermal stability, and mechanical properties. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
42	Characterization of polyhydroxyalkanoate blends incorporating unpurified biosustainably produced poly(3â€hydroxybutyrateâ€≺i>coà€3â€hydroxyvalerate). Journal of Applied Polymer Science, 2016, 133, .	1.3	17
43	Biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/thermoplastic polyurethane blends with improved mechanical and barrier performance. Polymer Degradation and Stability, 2016, 132, 52-61.	2.7	27
44	Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design. Journal of Colloid and Interface Science, 2016, 483, 84-92.	5.0	30
45	Toughness Enhancement of Commercial Poly (Hydroxybutyrate-co-Valerate) (PHBV) by Blending with a Thermoplastic Polyurethane (TPU). Journal of Multiscale Modeling, 2016, 07, 1640008.	1.0	2
46	Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Purified Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions. Journal of Renewable Materials, 2016, 4, 123-132.	1.1	27
47	Superparamagnetic [sic] nanofibers by electrospinning. RSC Advances, 2016, 6, 21413-21422.	1.7	9
48	IDM@TI NETWORK & DCIAL COMMITMENT: A INNOVATIVE PROPOSAL FOR IMPROVING TEACHING AND LEARNING IN MATERIALS SCIENCE AND ENGINEERING (MSE)., 2016,,.		0
49	On the use of ball milling to develop poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate)â€graphene nanocomposites (II)—Mechanical, barrier, and electrical properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	15
50	On the use of ball milling to develop PHBV–graphene nanocomposites (I)—Morphology, thermal properties, and thermal stability. Journal of Applied Polymer Science, 2015, 132, .	1.3	17
51	Modification of Nafion Membranes with Polyaniline to Reduce Methanol Permeability. Journal of the Electrochemical Society, 2015, 162, E325-E333.	1.3	9
52	The combined role of inhibitive pigment and organo-modified silica particles on powder coatings: Mechanical and electrochemical investigation. Progress in Organic Coatings, 2015, 80, 11-19.	1.9	11
53	A Project Based Learning interuniversity experience in materials science. , 2015, , .		2
54	Acquisition of transversal skills through PBL: a study of the perceptions of the students and teachers in materials science courses in engineering. Multidisciplinary Journal for Education, Social and Technological Sciences, 2015, 2, 121.	0.8	11

#	Article	IF	CITATIONS
55	Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Nanoscale Research Letters, 2014, 9, 582.	3.1	141
56	Keratin–polyhydroxyalkanoate meltâ€compounded composites with improved barrier properties of interest in food packaging applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	31
57	Study of the degradation of hybrid sol–gel coatings in aqueous medium. Progress in Organic Coatings, 2014, 77, 1799-1806.	1.9	53
58	Characterization of halloysite-water nanofluid for heat transfer applications. Applied Clay Science, 2014, 99, 54-61.	2.6	21
59	Materials in Spanish Design. Procedia, Social and Behavioral Sciences, 2014, 116, 2876-2880.	0.5	0
60	Adhesion enhancement of powder coatings on galvanised steel by addition of organo-modified silica particles. Progress in Organic Coatings, 2014, 77, 1309-1315.	1.9	26
61	Biotic degradation of poly(dl-lactide) based nanocomposites. Polymer Degradation and Stability, 2012, 97, 1278-1284.	2.7	27
62	Comparative study of nanocomposites of polyolefin compatibilizers containing kaolinite and montmorillonite organoclays. Journal of Applied Polymer Science, 2010, 115, 1325-1335.	1.3	25
63	Studying the degradation of polyhydroxybutyrateâ€ <i>co</i> â€valerate during processing with clayâ€based nanofillers. Journal of Applied Polymer Science, 2009, 112, 3669-3676.	1.3	46
64	Study of the dispersion of nanoclays in a LDPE matrix using microscopy and in-process ultrasonic monitoring. Polymer Testing, 2009, 28, 277-287.	2.3	30
65	Propiedades m $ ilde{A}$ ©canicas y trib $ ilde{A}^3$ logicas de recubrimientos alumina/titania proyectados por oxifuel (spray llama). Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2008, 47, 7-12.	0.9	1
66	Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 2006, 233, 191-197.	0.4	251
67	The effect of ethylene content on the interaction between ethylene–vinyl alcohol copolymers and water: (I) Application of FT-IR spectroscopy to determine transport properties and interactions in food packaging films. Polymer Testing, 2006, 25, 254-261.	2.3	27
68	The effect of ethylene content on the interaction between ethylene-vinyl alcohol copolymers and water—II: Influence of water sorption on the mechanical properties of EVOH copolymers. Polymer Testing, 2006, 25, 860-867.	2.3	44
69	Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior. Surface and Coatings Technology, 2006, 201, 1436-1443.	2.2	113
70	Development of amorphous PLA-montmorillonite nanocomposites. Journal of Materials Science, 2005, 40, 1785-1788.	1.7	63
71	Improving packaged food quality and safety. Part 2: Nanocomposites. Food Additives and Contaminants, 2005, 22, 994-998.	2.0	188
72	Development of EVOH-kaolinite nanocomposites. Polymer, 2004, 45, 5233-5238.	1.8	151

Luis Cabedo

#	Article	IF	CITATIONS
73	Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polymer Engineering and Science, 2004, 44, 598-608.	1.5	29
74	Study of the thermoformability of ethylene-vinyl alcohol copolymer based barrier blends of interest in food packaging applications. Journal of Applied Polymer Science, 2004, 91, 3851-3855.	1.3	17