List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4005247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A compilation of data on European flash floods. Journal of Hydrology, 2009, 367, 70-78.	2.3	623
2	Rainfall erosivity in Europe. Science of the Total Environment, 2015, 511, 801-814.	3.9	443
3	Seasonal characteristics of flood regimes across the Alpine–Carpathian range. Journal of Hydrology, 2010, 394, 78-89.	2.3	181
4	Climate of the Carpathian Region in the period 1961-2010: climatologies and trends of 10 variables. International Journal of Climatology, 2015, 35, 1322-1341.	1.5	152
5	Mapping monthly rainfall erosivity in Europe. Science of the Total Environment, 2017, 579, 1298-1315.	3.9	142
6	Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models. Renewable and Sustainable Energy Reviews, 2012, 16, 1636-1656.	8.2	114
7	ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Natural Hazards, 2015, 78, 1045-1063.	1.6	98
8	Recent climatic changes in Romania from observational data (1961–2013). Theoretical and Applied Climatology, 2015, 122, 111-119.	1.3	84
9	The July urban heat island of Bucharest as derived from modis images. Theoretical and Applied Climatology, 2009, 96, 145-153.	1.3	82
10	Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania. Renewable Energy, 2013, 55, 85-103.	4.3	82
11	The urban heat island of Bucharest during the extreme high temperatures of July 2007. Theoretical and Applied Climatology, 2009, 97, 391-401.	1.3	76
12	Climate variability in the Carpathian Mountains Region over 1961–2010. Global and Planetary Change, 2014, 118, 85-96.	1.6	67
13	Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena, 2017, 151, 74-86.	2.2	67
14	Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments. Water (Switzerland), 2016, 8, 119.	1.2	60
15	Spatial and temporal variability of climate extremes in Romania and associated largeâ€scale mechanisms. International Journal of Climatology, 2015, 35, 1278-1300.	1.5	59
16	Snow variability in Romania in connection to large-scale atmospheric circulation. International Journal of Climatology, 2014, 34, 134-144.	1.5	56
17	Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index (SPI). Climate Research, 2014, 60, 235-248.	0.4	49
18	The summer surface urban heat island of Bucharest (Romania) retrieved from MODIS images. Theoretical and Applied Climatology, 2015, 121, 631-640.	1.3	48

#	Article	IF	CITATIONS
19	Changes in annual temperature extremes in the Carpathians since AD 1961. Natural Hazards, 2014, 74, 1899-1910.	1.6	42
20	Longâ€ŧerm changes in drought indices in eastern and central Europe. International Journal of Climatology, 2022, 42, 225-249.	1.5	41
21	The history of rainfall data time-resolution in a wide variety of geographical areas. Journal of Hydrology, 2020, 590, 125258.	2.3	29
22	Effective monitoring and warning of Urban Heat Island effect on the indoor thermal risk in Bucharest (Romania). Energy and Buildings, 2016, 127, 452-468.	3.1	26
23	Accuracy and sensitivity analysis for 54 models of computing hourly diffuse solar irradiation on clear sky. Theoretical and Applied Climatology, 2013, 111, 379-399.	1.3	25
24	New types of simple non-linear models to compute solar global irradiance from cloud cover amount. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 117, 54-70.	0.6	24
25	A common methodology for risk assessment and mapping for south-east Europe: an application for heat wave risk in Romania. Natural Hazards, 2016, 82, 89-109.	1.6	23
26	Crop evapotranspiration assessment under climate change in the Pannonian basin during 1991–2050. Meteorological Applications, 2017, 24, 84-91.	0.9	23
27	Temperature changes and elevationâ€warming relationships in the Carpathian Mountains. International Journal of Climatology, 2021, 41, 2154-2172.	1.5	23
28	Climatic conditions influence emerging mycotoxin presence in wheat grown in Romania – A 2-year survey. Crop Protection, 2017, 100, 124-133.	1.0	22
29	Changes in thermal discomfort indices in Romania and their connections with large-scale mechanisms. Climate Research, 2015, 64, 213-226.	0.4	22
30	New models to compute solar global hourly irradiation from point cloudiness. Energy Conversion and Management, 2013, 67, 75-91.	4.4	21
31	Simple models to compute solar global irradiance from the CMSAF product Cloud Fractional Coverage. Renewable Energy, 2014, 66, 118-131.	4.3	20
32	Climatologic adjustments to monthly precipitation in Romania. International Journal of Climatology, 2011, 31, 704-714.	1.5	19
33	Reply to the comment on "Rainfall erosivity in Europe―by Auerswald et al Science of the Total Environment, 2015, 532, 853-857.	3.9	19
34	MODIS-based climatology of the Surface Urban Heat Island at country scale (Romania). Urban Climate, 2022, 41, 101056.	2.4	19
35	Spatioâ€ŧemporal interpolation of subâ€daily (6 h) precipitation over Romania for the period 1975–2010. International Journal of Climatology, 2016, 36, 1331-1343.	1.5	18
36	The CMSAF hourly solar irradiance database (product CM54): Accuracy and bias corrections with illustrations for Romania (south-eastern Europe). Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 93, 100-109.	0.6	16

#	Article	IF	CITATIONS
37	Simple solar radiation modelling for different cloud types and climatologies. Theoretical and Applied Climatology, 2016, 124, 141-160.	1.3	16
38	Meteorological and Ancillary Data Resources for Climate Research in Urban Areas. Climate, 2020, 8, 37.	1.2	15
39	Statistical Gap-Filling of SEVIRI Land Surface Temperature. Remote Sensing, 2020, 12, 1423.	1.8	14
40	Changes in intensity of high temporal resolution precipitation extremes in Romania: implications for Clausius-Clapeyron scaling. Climate Research, 2017, 72, 239-249.	0.4	14
41	Adaptive genetic potential of European silver fir in Romania in the context of climate change. Annals of Forest Research, 2018, 61, .	0.6	13
42	Influence of synoptic scale atmospheric circulation on the development of urban heat island in Prague and Bucharest. Urban Climate, 2020, 34, 100681.	2.4	12
43	Hybrid numerical models for wind speed forecasting. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 220, 105669.	0.6	12
44	A new point of view on the relationship between global solar irradiation and sunshine quantifiers. Solar Energy, 2016, 126, 252-263.	2.9	11
45	Terrain and its effects on fog occurrence. Science of the Total Environment, 2021, 768, 144359.	3.9	10
46	Rapid daily and sub-daily temperature variations in an urban environment. Climate Research, 2017, 73, 233-246.	0.4	10
47	ldentifying climate change hotspots relevant for ecosystems in Romania. Climate Research, 2020, 80, 165-173.	0.4	10
48	Reconstruction of historical aerosol optical depth time series over Romania during summertime. International Journal of Climatology, 2017, 37, 4720-4732.	1.5	8
49	Improving Irrigation Scheduling Using MOSES Short-Term Irrigation Forecasts and In Situ Water Resources Measurements on Alluvial Soils of Lower Danube Floodplain, Romania. Water (Switzerland), 2020, 12, 520.	1.2	8
50	CMSAF products Cloud Fraction Coverage and Cloud Type used for solar global irradiance estimation. Meteorology and Atmospheric Physics, 2016, 128, 525-535.	0.9	7
51	Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation. Water Resources Management, 2020, 34, 3479-3497.	1.9	7
52	Exploratory Analysis of Urban Climate Using a Gap-Filled Landsat 8 Land Surface Temperature Data Set. Sensors, 2020, 20, 5336.	2.1	7
53	Homogenization of a combined hourly air temperature dataset over Romania. International Journal of Climatology, 2020, 40, 2599-2608.	1.5	6
54	Enriching the historical meteorological information using Romanian language newspaper reports: A database from 1880 to 1900. International Journal of Climatology, 2021, 41, E548.	1.5	6

#	Article	IF	CITATIONS
55	Observed Variability and Trends from Instrumental Records. Springer Atmospheric Sciences, 2015, , 149-185.	0.4	6
56	A Romanian daily high-resolution gridded dataset of snow depth (2005-2015). Geofizika, 2017, 34, 275-295.	0.1	5
57	Accuracy of CM-SAF solar irradiance incident on horizontal surface. Theoretical and Applied Climatology, 2014, 117, 233-246.	1.3	4
58	A new perspective on the relationship between cloud shade and point cloudiness. Atmospheric Research, 2016, 172-173, 136-146.	1.8	4
59	Analysis of Sub-Daily Precipitation for the PannEx Region. Atmosphere, 2021, 12, 838.	1.0	4
60	Statistical analysis of the effects of forests on fog. Science of the Total Environment, 2021, 781, 146675.	3.9	4
61	COMPARISON BETWEEN RADAR ESTIMATED AND RAIN GAUGE MEASURED PRECIPITATION IN THE MOLDAVIAN PLATEAU. Environmental Engineering and Management Journal, 2012, 11, 723-731.	0.2	4
62	<scp>RoCliB</scp> – biasâ€corrected <scp>CORDEX RCM</scp> dataset over Romania. Geoscience Data Journal, 2023, 10, 262-275.	1.8	4
63	The Urban Climate Services URCLIM project. Climate Services, 2020, 20, 100194.	1.0	2
64	Projections of Future Changes in Climate of the Romanian Carpathians. Springer Atmospheric Sciences, 2015, , 199-205.	0.4	2
65	Regional Climatic Patterns. Springer Atmospheric Sciences, 2015, , 73-148.	0.4	2
66	Variability and Change in Water Cycle at the Catchment Level. , 2018, , .		1
67	Changing Climate Extremes in the Last Five Decades (1961–2010). Springer Atmospheric Sciences, 2015, , 187-198.	0.4	1
68	Local fresh- and sea-water effects on fog occurrence. Science of the Total Environment, 2022, 807, 150799.	3.9	1
69	The Evaluation of Solar Energy Availability at Ground Level Using Satellite Resources. Applied Mechanics and Materials, 0, 378, 40-45.	0.2	0
70	A new perspective on the sunshine duration variability. Theoretical and Applied Climatology, 2020, 139, 1219-1230.	1.3	0
71	A new parameterization of the effective cloud fields. Theoretical and Applied Climatology, 2020, 142, 769-779.	1.3	0
72	What Ångström—Prescott equation tells us about the cloud and clear-sky climatologies?. Theoretical and Applied Climatology, 0, , 1.	1.3	0

#	Article	IF	CITATIONS
73	AIR-TEMPERATURE SINGULARITIES AND DIFFERENCES BETWEEN INTRA- AND EXTRA-URBAN WEATHER STATIONS. CASE STUDY: BUCHAREST-FILARET AND BUCHAREST-BÄ,NEASA. Present Environment and Sustainable Development, 2020, 14, .	0.1	0