Paul A Mayewski

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4004911/paul-a-mayewski-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 60 3,732 59 h-index g-index citations papers 60 4,396 4.9 7.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
59	Mt. Everest highest glacier is a sentinel for accelerating ice loss. <i>Npj Climate and Atmospheric Science</i> , 2022 , 5,	8	5
58	Trace metal emission history captured in a Chilean ice core. Atmospheric Environment, 2022, 276, 11900	025.3	1
57	The 1991 explosive Hudson volcanic eruption as a geochronological marker for the Northern Antarctic Peninsula <i>Anais Da Academia Brasileira De Ciencias</i> , 2022 , 94, e20210810	1.4	
56	Anthropogenic trace elements (Bi, Cd, Cr, Pb) concentrations in a West Antarctic ice core <i>Anais Da Academia Brasileira De Ciencias</i> , 2022 , 94, e20210351	1.4	
55	A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. <i>Cryosphere</i> , 2022 , 16, 1997-2008	5.5	O
54	Into Thick(er) Air? Oxygen Availability at Humans' Physiological Frontier on Mount Everest. <i>IScience</i> , 2020 , 23, 101718	6.1	6
53	Climate Change in the Hindu Kush Himalayas: Basis and Gaps. <i>One Earth</i> , 2020 , 3, 551-555	8.1	8
52	Alpine ice and the annual political economy of the Angevin Empire, from the death of Thomas Becket to Magna Carta, c. AD 1170 1216. <i>Antiquity</i> , 2020 , 94, 473-490	1	
51	Going to Extremes: Installing the World Highest Weather Stations on Mount Everest. <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, E1870-E1890	6.1	31
50	Importance and vulnerability of the world's water towers. <i>Nature</i> , 2020 , 577, 364-369	50.4	368
49	Pushing Climate Change Science to the Roof of the World. <i>One Earth</i> , 2020 , 3, 556-560	8.1	5
48	Precipitation Characteristics and Moisture Source Regions on Mt. Everest in the Khumbu, Nepal. <i>One Earth</i> , 2020 , 3, 594-607	8.1	7
47	The Impact of a Six-Year Climate Anomaly on the "Spanish Flu" Pandemic and WWI. <i>GeoHealth</i> , 2020 , 4, e2020GH000277	5	8
46	Subseasonal Variations of Stable Isotopes in Tropical Andean Precipitation. <i>Journal of Hydrometeorology</i> , 2019 , 20, 915-933	3.7	8
45	A 2000 year-long proxy and observational reconstruction of Central Asian climate. <i>Quaternary Science Reviews</i> , 2019 , 223, 105847	3.9	O
44	2000 years of North Atlantic-Arctic climate. <i>Quaternary Science Reviews</i> , 2019 , 216, 1-17	3.9	6
43	A 2000 Year Saharan Dust Event Proxy Record from an Ice Core in the European Alps. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 12882-12900	4.4	9

(2015-2018)

42	An Ensemble Mean and Evaluation of Third Generation Global Climate Reanalysis Models. <i>Atmosphere</i> , 2018 , 9, 236	2.7	7
41	The Role of Historical Context in Understanding Past Climate, Pollution and Health Data in Trans-disciplinary Studies: Reply to Comments on More et al., 2017. <i>GeoHealth</i> , 2018 , 2, 162-170	5	6
40	Alpine ice-core evidence for the transformation of the European monetary system, AD 640 B 70. <i>Antiquity</i> , 2018 , 92, 1571-1585	1	21
39	Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. <i>Npj Climate and Atmospheric Science</i> , 2018 , 1,	8	15
38	Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. <i>Climate of the Past</i> , 2018 , 14, 21-37	3.9	24
37	A twentieth century major soluble ion record of dust and anthropogenic pollutants from Inilchek Glacier, Tien Shan. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 1884-1900	4.4	8
36	Next-generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death. <i>GeoHealth</i> , 2017 , 1, 211-219	5	54
35	A New Multielement Method for LA-ICP-MS Data Acquisition from Glacier Ice Cores. <i>Environmental Science & Environmental Scienc</i>	10.3	11
34	A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica. <i>Cryosphere</i> , 2017 , 11, 1537-1552	5.5	9
33	Possible Icelandic Tephra Found in European Colle Gnifetti Glacier. <i>Geochemistry, Geophysics, Geosystems</i> , 2017 , 18, 3904-3909	3.6	5
32	Examination of precipitation variability in southern Greenland. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 6202-6216	4.4	8
31	Recent increase in Antarctic Peninsula ice core uranium concentrations. <i>Atmospheric Environment</i> , 2016 , 140, 381-385	5.3	16
30	Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile. <i>Atmospheric Environment</i> , 2016 , 125, 257-264	5.3	24
29	Drilling, processing and first results for Mount Johns ice core in West Antarctica Ice Sheet. <i>Brazilian Journal of Geology</i> , 2016 , 46, 29-40	1.5	7
28	Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene. <i>Journal of Glaciology</i> , 2016 , 62, 411-439	3.4	30
27	Ultra-high resolution snapshots of three multi-decadal periods in an Antarctic ice core. <i>Journal of Glaciology</i> , 2016 , 62, 31-36	3.4	6
26	Potential for Southern Hemisphere climate surprises. <i>Journal of Quaternary Science</i> , 2015 , 30, 391-395	2.3	17
25	Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau. <i>Geophysical Research Letters</i> , 2015 , 42, 2434-2441	4.9	34

24	New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores. <i>Journal of Glaciology</i> , 2015 , 61, 233-242	3.4	42
23	Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 10,996	4.4	18
22	Holocene warming marked by abrupt onset of longer summers and reduced storm frequency around Greenland. <i>Journal of Quaternary Science</i> , 2014 , 29, 99-104	2.3	41
21	Medieval Irish chronicles reveal persistent volcanic forcing of severe winter cold events, 431¶649 CE. <i>Environmental Research Letters</i> , 2013 , 8, 024035	6.2	50
20	Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing. <i>Cryosphere</i> , 2013 , 7, 515-535	5.5	29
19	An ice-core proxy for northerly air mass incursions into West Antarctica. <i>International Journal of Climatology</i> , 2012 , 32, 1455-1465	3.5	44
18	Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence. <i>Journal of Interdisciplinary History</i> , 2012 , 43, 169-220	О	274
17	A 108.83-m Ice-Core Record of Atmospheric Dust Deposition at Mt. Qomolangma (Everest), Central Himalaya. <i>Quaternary Research</i> , 2010 , 73, 33-38	1.9	40
16	Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350-year Mount Everest ice core record. <i>Journal of Geophysical Research</i> , 2009 , 114,		57
15	Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity with sites across the Tibetan Plateau on 50¶00 year timescales. <i>Journal of Glaciology</i> , 2008 , 54, 343-352	3.4	78
14	Summer temperature trend over the past two millennia using air content in Himalayan ice. <i>Climate of the Past</i> , 2007 , 3, 89-95	3.9	20
13	Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. <i>Atmospheric Environment</i> , 2007 , 41, 7208-7218	5.3	79
12	Continuous ice core melter system with discrete sampling for major ion, trace element and stable isotope analyses. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	127
11	A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. <i>Holocene</i> , 2002 , 12, 257-266	2.6	266
10	High-precision dating of volcanic events (A.D. 1301¶995) using ice cores from Law Dome, Antarctica. <i>Journal of Geophysical Research</i> , 2001 , 106, 28089-28095		71
9	Bipolar Changes in Atmospheric Circulation During the Little Ice Age. <i>Science</i> , 1997 , 277, 1294-1296	33.3	164
8	Glaciochemistry of polar ice cores: A review. <i>Reviews of Geophysics</i> , 1997 , 35, 219-243	23.1	503
7	Changes in Atmospheric Circulation and Ocean Ice Cover over the North Atlantic During the Last 41,000 Years. <i>Science</i> , 1994 , 263, 1747-51	33.3	324

LIST OF PUBLICATIONS

6	Greenland ice core Bignalltharacteristics: An expanded view of climate change. <i>Journal of Geophysical Research</i> , 1993 , 98, 12839		115
5	Anthropogenic sulfate and Asian dust signals in snow from Tien Shan, northwest China. <i>Annals of Glaciology</i> , 1992 , 16, 45-52	2.5	58
4	An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. <i>Nature</i> , 1990 , 346, 554-556	50.4	223
3	Sulfate and nitrate concentrations from a South greenland ice core. <i>Science</i> , 1986 , 232, 975-7	33.3	180
2	Himalayan and Trans-Himalayan Glacier Fluctuations Since AD 1812. <i>Arctic and Alpine Research</i> , 1979 , 11, 267		163
1	Temperature and mineral dust variability recorded in two low accumulation Alpine ice cores over the last millennium		2