
Paul A Mayewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4004911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance and vulnerability of the world's water towers. Nature, 2020, 577, 364-369.	27.8	885
2	Glaciochemistry of polar ice cores: A review. Reviews of Geophysics, 1997, 35, 219-243.	23.0	569
3	Climate Change during and after the Roman Empire: Reconstructing the Past from Scientific and Historical Evidence. Journal of Interdisciplinary History, 2012, 43, 169-220.	0.0	405
4	Changes in Atmospheric Circulation and Ocean Ice Cover over the North Atlantic During the Last 41,000 Years. Science, 1994, 263, 1747-1751.	12.6	368
5	A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. Holocene, 2002, 12, 257-266.	1.7	297
6	An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. Nature, 1990, 346, 554-556.	27.8	250
7	Himalayan and Trans-Himalayan Glacier Fluctuations Since AD 1812. Arctic and Alpine Research, 1979, 11, 267.	1.3	201
8	Sulfate and Nitrate Concentrations from a South Greenland Ice Core. Science, 1986, 232, 975-977.	12.6	200
9	Bipolar Changes in Atmospheric Circulation During the Little Ice Age. Science, 1997, 277, 1294-1296.	12.6	188
10	Greenland ice core "signal―characteristics: An expanded view of climate change. Journal of Geophysical Research, 1993, 98, 12839-12847.	3.3	152
11	Continuous Ice Core Melter System with Discrete Sampling for Major Ion, Trace Element, and Stable Isotope Analyses. Environmental Science & Technology, 2006, 40, 3355-3361.	10.0	142
12	Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity with sites across the Tibetan Plateau on 50–100 year timescales. Journal of Glaciology, 2008, 54, 343-352.	2.2	96
13	Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmospheric Environment, 2007, 41, 7208-7218.	4.1	87
14	High-precision dating of volcanic events (A.D. 1301-1995) using ice cores from Law Dome, Antarctica. Journal of Geophysical Research, 2001, 106, 28089-28095.	3.3	78
15	Nextâ€generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: Insights from the Black Death. GeoHealth, 2017, 1, 211-219.	4.0	74
16	Recent increases in atmospheric concentrations of Bi, U, Cs, S and Ca from a 350â€year Mount Everest ice core record. Journal of Geophysical Research, 2009, 114, .	3.3	65
17	Medieval Irish chronicles reveal persistent volcanic forcing of severe winter cold events, 431–1649 CE. Environmental Research Letters, 2013, 8, 024035.	5.2	63
18	Anthropogenic sulfate and Asian dust signals in snow from Tien Shan, northwest China. Annals of Glaciology, 1992, 16, 45-52.	1.4	60

PAUL A MAYEWSKI

#	Article	IF	CITATIONS
19	An iceâ€core proxy for northerly air mass incursions into West Antarctica. International Journal of Climatology, 2012, 32, 1455-1465.	3.5	55
20	Holocene warming marked by abrupt onset of longer summers and reduced storm frequency around Greenland. Journal of Quaternary Science, 2014, 29, 99-104.	2.1	55
21	New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores. Journal of Glaciology, 2015, 61, 233-242.	2.2	54
22	Going to Extremes: Installing the World's Highest Weather Stations on Mount Everest. Bulletin of the American Meteorological Society, 2020, 101, E1870-E1890.	3.3	46
23	A 108.83-m Ice-Core Record of Atmospheric Dust Deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research, 2010, 73, 33-38.	1.7	45
24	Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau. Geophysical Research Letters, 2015, 42, 2434-2441.	4.0	39
25	Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Climate of the Past, 2018, 14, 21-37.	3.4	39
26	Abrupt and moderate climate changes in the mid-latitudes of Asia during the Holocene. Journal of Glaciology, 2016, 62, 411-439.	2.2	37
27	Anomalously high arsenic concentration in a West Antarctic ice core and its relationship to copper mining in Chile. Atmospheric Environment, 2016, 125, 257-264.	4.1	34
28	Variations in snow and firn chemistry along US ITASE traverses and the effect of surface glazing. Cryosphere, 2013, 7, 515-535.	3.9	32
29	Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. Npj Climate and Atmospheric Science, 2018, 1, .	6.8	30
30	Summer temperature trend over the past two millennia using air content in Himalayan ice. Climate of the Past, 2007, 3, 89-95.	3.4	26
31	Alpine ice-core evidence for the transformation of the European monetary system, AD 640–670. Antiquity, 2018, 92, 1571-1585.	1.0	26
32	A 2000 Year Saharan Dust Event Proxy Record from an Ice Core in the European Alps. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12882-12900.	3.3	25
33	Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,996.	3.3	24
34	Recent increase in Antarctic Peninsula ice core uranium concentrations. Atmospheric Environment, 2016, 140, 381-385.	4.1	23
35	Precipitation Characteristics and Moisture Source Regions on Mt. Everest in the Khumbu, Nepal. One Earth, 2020, 3, 594-607.	6.8	23
36	Potential for Southern Hemisphere climate surprises. Journal of Quaternary Science, 2015, 30, 391-395.	2.1	22

3

PAUL A MAYEWSKI

#	Article	IF	CITATIONS
37	Mt. Everest's highest glacier is a sentinel for accelerating ice loss. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	19
38	The Impact of a Six‥ear Climate Anomaly on the "Spanish Flu―Pandemic and WWI. GeoHealth, 2020, 4, e2020GH000277.	4.0	18
39	Climate Change in the Hindu Kush Himalayas: Basis and Gaps. One Earth, 2020, 3, 551-555.	6.8	17
40	A New Multielement Method for LA-ICP-MS Data Acquisition from Glacier Ice Cores. Environmental Science & Technology, 2017, 51, 13282-13287.	10.0	14
41	Examination of precipitation variability in southern Greenland. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6202-6216.	3.3	14
42	Subseasonal Variations of Stable Isotopes in Tropical Andean Precipitation. Journal of Hydrometeorology, 2019, 20, 915-933.	1.9	12
43	A twentieth century major soluble ion record of dust and anthropogenic pollutants from Inilchek Glacier, Tien Shan. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1884-1900.	3.3	11
44	A 125-year record of climate and chemistry variability at the Pine Island Glacier ice divide, Antarctica. Cryosphere, 2017, 11, 1537-1552.	3.9	11
45	2000 †years of North Atlantic-Arctic climate. Quaternary Science Reviews, 2019, 216, 1-17.	3.0	11
46	Into Thick(er) Air? Oxygen Availability at Humans' Physiological Frontier on Mount Everest. IScience, 2020, 23, 101718.	4.1	11
47	An Ensemble Mean and Evaluation of Third Generation Global Climate Reanalysis Models. Atmosphere, 2018, 9, 236.	2.3	10
48	Drilling, processing and first results for Mount Johns ice core in West Antarctica Ice Sheet. Brazilian Journal of Geology, 2016, 46, 29-40.	0.7	8
49	Pushing Climate Change Science to the Roof of the World. One Earth, 2020, 3, 556-560.	6.8	8
50	Ultra-high resolution snapshots of three multi-decadal periods in an Antarctic ice core. Journal of Glaciology, 2016, 62, 31-36.	2.2	7
51	The Role of Historical Context in Understanding Past Climate, Pollution and Health Data in Transâ€disciplinary Studies: Reply to Comments on More et al., 2017. GeoHealth, 2018, 2, 162-170.	4.0	6
52	Possible Icelandic Tephra Found in European Colle Gnifetti Glacier. Geochemistry, Geophysics, Geosystems, 2017, 18, 3904-3909.	2.5	5
53	Trace metal emission history captured in a Chilean ice core. Atmospheric Environment, 2022, 276, 119002.	4.1	5
54	A 2000 year-long proxy and observational reconstruction of Central Asian climate. Quaternary Science Reviews, 2019, 223, 105847.	3.0	3

PAUL A MAYEWSKI

#	Article	IF	CITATIONS
55	Evaluation of Reanalysis Temperature and Precipitation for the Andean Altiplano and Adjacent Cordilleras. Earth and Space Science, 2022, 9, .	2.6	2
56	A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 2022, 16, 1997-2008.	3.9	2
57	Alpine ice and the annual political economy of the Angevin Empire, from the death of Thomas Becket to Magna Carta, c. AD 1170–1216. Antiquity, 2020, 94, 473-490.	1.0	1
58	Anthropogenic trace elements (Bi, Cd, Cr, Pb) concentrations in a West Antarctic ice core. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210351.	0.8	1
59	The 1991 explosive Hudson volcanic eruption as a geochronological marker for the Northern Antarctic Peninsula. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210810.	0.8	0