Carlos Barata

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4004600/carlos-barata-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

208 6,984 49 72 g-index

218 7,788 6.1 5.99 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
208	Phototactic behaviour and neurotransmitter profiles in two Daphnia magna clones: Vertical and horizontal responses to fish kairomones and psychotropic drugs <i>Science of the Total Environment</i> , 2022 , 154684	10.2	O
207	Stress response markers in the blood of SB Tom@reen sea turtles (Chelonia mydas) and their relation with accumulated metal levels. <i>Environmental Pollution</i> , 2021 , 293, 118490	9.3	4
206	Reduction of histamine and enhanced spinning behavior of Daphnia magna caused by scarlet mutant. <i>Genesis</i> , 2021 , 59, e23403	1.9	O
205	Combined targeted/untargeted analytical and chemometric approaches in the characterization of Daphnia magna metabolomic changes under bisphenol A exposure. <i>Microchemical Journal</i> , 2021 , 165, 106150	4.8	2
204	Characterization of neurotransmitters and related metabolites in Daphnia magna juveniles deficient in serotonin and exposed to neuroactive chemicals that affect its behavior: A targeted LC-MS/MS method. <i>Chemosphere</i> , 2021 , 263, 127814	8.4	7
203	Towards an innovative combined process coupling biodegradation and photo-oxidation for the removal of pharmaceutical residues. <i>Journal of Chemical Technology and Biotechnology</i> , 2021 , 96, 755-70	63 :5	1
202	Daphnia magna Gut-Specific Transcriptomic Responses to Feeding Inhibiting Chemicals and Food Limitation. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2510-2520	3.8	1
201	Improving water quality does not guarantee fish health: Effects of ammonia pollution on the behaviour of wild-caught pre-exposed fish. <i>PLoS ONE</i> , 2021 , 16, e0243404	3.7	2
2 00	Pharmacological Modulation of Behaviour, Serotonin and Dopamine Levels in Exposed to the Monoamine Oxidase Inhibitor Deprenyl. <i>Toxics</i> , 2021 , 9,	4.7	1
199	Pharmacological modulation of fish-induced depth selection in D. magna: the role of cholinergic and GABAergic signalling. <i>Scientific Reports</i> , 2021 , 11, 19407	4.9	2
198	Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures. <i>Environmental Pollution</i> , 2021 , 288, 117735	9.3	O
197	Aqueous stability and degradation of psychiatric and neuroactive compounds and its biological activity in Daphnia magna. <i>Science of the Total Environment</i> , 2021 , 798, 149252	10.2	3
196	Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals. <i>Science of the Total Environment</i> , 2020 , 733, 139029	10.2	6
195	Transcriptomic effects of tributyltin (TBT) in zebrafish eleutheroembryos. A functional benchmark dose analysis. <i>Journal of Hazardous Materials</i> , 2020 , 398, 122881	12.8	11
194	Daphnia magna responses to fish kairomone and chlorpromazine exposures. <i>Chemico-Biological Interactions</i> , 2020 , 325, 109123	5	7
193	A high-throughput assay for screening environmental pollutants and drugs impairing predator avoidance in Daphnia magna. <i>Science of the Total Environment</i> , 2020 , 740, 140045	10.2	10
192	Untargeted metabolomics changes on Gammarus pulex induced by propranolol, triclosan, and nimesulide pharmaceutical drugs. <i>Chemosphere</i> , 2020 , 260, 127479	8.4	6

191	Lethal and sub-lethal effects of nanosized titanium dioxide particles on Hydropsyche exocellata Dufour, 1841. <i>Aquatic Insects</i> , 2020 , 41, 85-103	0.5	1	
190	Impacts of the Invasive Seaweed Exudate on Energetic Metabolism of Rock Pool Invertebrates. <i>Toxins</i> , 2020 , 13,	4.9	4	
189	Changes in lipid profiles induced by bisphenol A (BPA) in zebrafish eleutheroembryos during the yolk sac absorption stage. <i>Chemosphere</i> , 2020 , 246, 125704	8.4	13	
188	Data Processing for RNA/DNA Sequencing 2020 , 507-514			
187	Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. <i>Water Research</i> , 2020 , 168, 115165	12.5	17	
186	Effects of Single and Combined Low Concentrations of Neuroactive Drugs on Reproduction and Transcriptomic Responses. <i>Environmental Science & Environmental Science & Environm</i>	10.3	9	
185	Morphometric signatures of exposure to endocrine disrupting chemicals in zebrafish eleutheroembryos. <i>Aquatic Toxicology</i> , 2019 , 214, 105232	5.1	18	
184	Comparison in the response of three European Gammarid species exposed to the growth regulator insecticide fenoxycarb. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 11496-11502	5.1	0	
183	Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. <i>Science of the Total Environment</i> , 2019 , 674, 462-471	10.2	23	
182	Time-dependent transcriptomic responses of Daphnia magna exposed to metabolic disruptors that enhanced storage lipid accumulation. <i>Environmental Pollution</i> , 2019 , 249, 99-108	9.3	10	
181	Tryptophan hydroxylase (TRH) loss of function mutations in Daphnia deregulated growth, energetic, serotoninergic and arachidonic acid metabolic signalling pathways. <i>Scientific Reports</i> , 2019 , 9, 3693	4.9	10	
180	Chironomus riparius exposure to field-collected contaminated sediments: From subcellular effect to whole-organism response. <i>Science of the Total Environment</i> , 2019 , 671, 874-882	10.2	24	
179	Analysis of neurotransmitters in Daphnia magna affected by neuroactive pharmaceuticals using liquid chromatography-high resolution mass spectrometry. <i>Environmental Pollution</i> , 2019 , 254, 113029	9.3	10	
178	Linking cholinesterase inhibition with behavioural changes in the sea snail Gibbula umbilicalis: Effects of the organophosphate pesticide chlorpyrifos. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2019 , 225, 108570	3.2	8	
177	Characterization of neurotransmitter profiles in Daphnia magna juveniles exposed to environmental concentrations of antidepressants and anxiolytic and antihypertensive drugs using liquid characteristics. Analytical and Bioanalytical Chemistry, 2019,	4.4	11	
176	411, 5867-5876 Analysis of 44 pharmaceuticals consumed by elderly using liquid chromatography coupled to tandem mass spectrometry. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2019 , 168, 55-63	3.5	15	
175	Development of predicted environmental concentrations to prioritize the occurrence of pharmaceuticals in rivers from Catalonia. <i>Science of the Total Environment</i> , 2019 , 666, 57-67	10.2	18	
174	Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs. <i>Science of the Total Environment</i> , 2019 , 662, 160-167	10.2	22	

173	Effects of carbamazepine and cetirizine under an ocean acidification scenario on the biochemical and transcriptome responses of the clam Ruditapes philippinarum. <i>Environmental Pollution</i> , 2018 , 235, 857-868	9.3	30
172	Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity. <i>Journal of Separation Science</i> , 2018 , 41, 2368-2379	3.4	8
171	Tryptophan hydroxylase (TRH) loss of function mutations induce growth and behavioral defects in Daphnia magna. <i>Scientific Reports</i> , 2018 , 8, 1518	4.9	19
170	Effects of Camellia sinensis crude saponin on survival and biochemical markers of oxidative stress and multixenobiotic resistance of the Mediterranean mussel, Mytilus galloprovincialis. <i>Science of the Total Environment</i> , 2018 , 625, 1467-1475	10.2	7
169	Combined effects of insecticide exposure and predation risk on freshwater detritivores. <i>Ecotoxicology</i> , 2018 , 27, 794-802	2.9	6
168	Invasive Species Mediate Insecticide Effects on Community and Ecosystem Functioning. <i>Environmental Science & Environmental Sc</i>	10.3	16
167	Toxicological Analysis of Acid Mine Drainage by Water Quality and Land Use Bioassays. <i>Mine Water and the Environment</i> , 2018 , 37, 88-97	2.4	9
166	Combined effects of salinity, temperature and hypoxia on Daphnia magna metabolism. <i>Science of the Total Environment</i> , 2018 , 610-611, 602-612	10.2	26
165	Fenoxycarb exposure disrupted the reproductive success of the amphipod Gammarus fossarum with limited effects on the lipid profile. <i>PLoS ONE</i> , 2018 , 13, e0196461	3.7	4
164	Allocation of glycerolipids and glycerophospholipids from adults to eggs in Daphnia magna: Perturbations by compounds that enhance lipid droplet accumulation. <i>Environmental Pollution</i> , 2018 , 242, 1702-1710	9.3	16
163	Effect of psychiatric drugs on Daphnia magna oxylipin profiles. <i>Science of the Total Environment</i> , 2018 , 644, 1101-1109	10.2	14
162	Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray. <i>BMC Genomics</i> , 2018 , 19, 370	4.5	14
161	Omics in Zebrafish Teratogenesis. <i>Methods in Molecular Biology</i> , 2018 , 1797, 421-441	1.4	3
160	Dysregulatory effects of retinoic acid isomers in late zebrafish embryos. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 3849-3859	5.1	4
159	Pharmaceuticals released from senior residences: occurrence and risk evaluation. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 6095-6106	5.1	14
158	Functional Data Analysis: Omics for Environmental Risk Assessment. <i>Comprehensive Analytical Chemistry</i> , 2018 , 583-611	1.9	2
157	Dose-dependent transcriptomic responses of zebrafish eleutheroembryos to Bisphenol A. <i>Environmental Pollution</i> , 2018 , 243, 988-997	9.3	21
156	Antioxidant activity and lipid peroxidation in Artemia nauplii enriched with DHA-rich oil emulsion and the effect of adding an external antioxidant based on hydroxytyrosol. <i>Aquaculture Research</i> ,	1.9	2

(2016-2017)

155	Integrated environmental risk assessment of chemical pollution in a Mediterranean floodplain by combining chemical and biological methods. <i>Science of the Total Environment</i> , 2017 , 583, 248-256	10.2	10
154	Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution. <i>Science of the Total Environment</i> , 2017 , 586, 542-550	10.2	37
153	Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona). <i>Environmental Science and Pollution Research</i> , 2017 , 24, 15406-15415	5.1	9
152	Validation of a two-generational reproduction test in Daphnia magna: An interlaboratory exercise. <i>Science of the Total Environment</i> , 2017 , 579, 1073-1083	10.2	18
151	Evolutionary consequences of historical metal contamination for natural populations of Chironomus riparius (Diptera: Chironomidae). <i>Ecotoxicology</i> , 2017 , 26, 534-546	2.9	13
150	Investigating heritability of cadmium tolerance in Chironomus riparius natural populations: A physiological approach. <i>Chemosphere</i> , 2017 , 170, 83-94	8.4	15
149	Biphasic modulation of neuro- and interrenal steroidogenesis in juvenile African sharptooth catfish (Clarias gariepinus) exposed to waterborne di-(2-ethylhexyl) phthalate. <i>General and Comparative Endocrinology</i> , 2017 , 254, 22-37	3	11
148	Energetic costs and biochemical biomarkers associated with esfenvalerate exposure in Sericostoma vittatum. <i>Chemosphere</i> , 2017 , 189, 445-453	8.4	14
147	The role of genetic diversity and past-history selection pressures in the susceptibility of Chironomus riparius populations to environmental stress. <i>Science of the Total Environment</i> , 2017 , 576, 807-816	10.2	11
146	Exposure to chlorantraniliprole affects the energy metabolism of the caddisfly Sericostoma vittatum. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1584-1591	3.8	18
145	Can salinity trigger cascade effects on streams? A mesocosm approach. <i>Science of the Total Environment</i> , 2016 , 540, 3-10	10.2	40
144	Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers. <i>Science of the Total Environment</i> , 2016 , 540, 307-23	10.2	109
143	Mechanisms of Action of Compounds That Enhance Storage Lipid Accumulation in Daphnia magna. <i>Environmental Science & Environmental Science & Environme</i>	10.3	17
142	Exploring the disruptive effects of TBT on lipid homeostasis of Daphnia magna using chemometric methods. <i>Chemometrics and Intelligent Laboratory Systems</i> , 2016 , 159, 58-68	3.8	4
141	Chloride and sulphate toxicity to Hydropsyche exocellata (Trichoptera, Hydropsychidae): Exploring intraspecific variation and sub-lethal endpoints. <i>Science of the Total Environment</i> , 2016 , 566-567, 1032-	1 0 412	16
140	Toxicity assessment of atmospheric particulate matter in the Mediterranean and Black Seas open waters. <i>Science of the Total Environment</i> , 2016 , 545-546, 163-70	10.2	22
139	Behavioural responses of freshwater planarians after short-term exposure to the insecticide chlorantraniliprole. <i>Aquatic Toxicology</i> , 2016 , 170, 371-376	5.1	31
138	Metabolic profiling of Daphnia magna exposed to environmental stressors by GCMS and chemometric tools. <i>Metabolomics</i> , 2016 , 12, 1	4.7	24

137	Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress. <i>Aquatic Toxicology</i> , 2016 , 175, 132-43	5.1	8
136	Compounds altering fat storage in Daphnia magna. Science of the Total Environment, 2016 , 545-546,	127 - 362	45
135	Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. <i>Aquatic Toxicology</i> , 2016 , 170, 289-296	5.1	74
134	Endocrine Disruption in the Omics Era: New Views, New Hazards, New Approaches. <i>Open Biotechnology Journal</i> , 2016 , 10, 20-35	2	7
133	Two-generational effects of contaminants in Daphnia magna: Effects of offspring quality. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1470-7	3.8	12
132	Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue. <i>Toxicology and Applied Pharmacology</i> , 2016 , 297, 56-67	4.6	9
131	Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna. <i>Environmental Science & Environmental Science & Envi</i>	10.3	38
130	Effects of the antidepressant fluoxetine in spiked-sediments on developmental and reproductive features of the polychaetes Capitella teleta and Capitella sp A. <i>Ecotoxicology</i> , 2015 , 24, 106-18	2.9	7
129	Liquid chromatography coupled with tandem mass spectrometry to characterise trace levels of cyanobacteria and dinoflagellate toxins in suspended solids and sediments. <i>Analytical and Bioanalytical Chemistry</i> , 2015 , 407, 1451-62	4.4	6
128	qRT-PCR evaluation of the transcriptional response of zebra mussel to heavy metals. <i>BMC Genomics</i> , 2015 , 16, 354	4.5	6
127	Differential embryotoxicity of the organic pollutants in rural and urban air particles. <i>Environmental Pollution</i> , 2015 , 206, 535-42	9.3	28
126	Sub-lethal toxicity of environmentally relevant concentrations of esfenvalerate to Chironomus riparius. <i>Environmental Pollution</i> , 2015 , 207, 273-9	9.3	31
125	Degradation and toxicity of mitoxantrone and chlorambucil in water. <i>International Journal of Environmental Science and Technology</i> , 2015 , 12, 633-640	3.3	20
124	Transcriptomic, biochemical and individual markers in transplanted Daphnia magna to characterize impacts in the field. <i>Science of the Total Environment</i> , 2015 , 503-504, 200-12	10.2	12
123	Obesogens beyond Vertebrates: Lipid Perturbation by Tributyltin in the Crustacean Daphnia magna. <i>Environmental Health Perspectives</i> , 2015 , 123, 813-9	8.4	68
122	Reviewing Biological Indices and Biomarkers Suitability to Analyze Human Impacts. Emergent Tools to Analyze Biological Status in Rivers. <i>Handbook of Environmental Chemistry</i> , 2015 , 249-268	0.8	
121	Life history and biochemical effects of chlorantraniliprole on Chironomus riparius. <i>Science of the Total Environment</i> , 2015 , 508, 506-13	10.2	65
120	Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River. <i>Aquatic Toxicology</i> , 2015 , 161, 41-50	5.1	16

119	Toxic assessment of urban atmospheric particle-bound PAHs: relevance of composition and particle size in Barcelona (Spain). <i>Environmental Pollution</i> , 2014 , 184, 555-62	9.3	55
118	Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. <i>Science of the Total Environment</i> , 2014 , 470-471, 1272-80	10.2	101
117	Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. <i>Nanotoxicology</i> , 2014 , 8 Suppl 1, 92-9	5.3	19
116	The use of cholinesterase as potential biomarker: In vitro characterization in the polychaete Capitella teleta. <i>Marine Pollution Bulletin</i> , 2014 , 85, 179-85	6.7	8
115	Toxicity of atmospheric particle-bound PAHs: an environmental perspective. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 11623-33	5.1	26
114	Occurrence, elimination, and risk of anticoagulant rodenticides and drugs during wastewater treatment. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 7194-203	5.1	27
113	Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos. <i>Science of the Total Environment</i> , 2014 , 470-471, 379-89	10.2	59
112	Effects of Barcelona harbor sediments in biological responses of the polychaete Capitella teleta. <i>Science of the Total Environment</i> , 2014 , 485-486, 545-553	10.2	12
111	Transformation Products of Alkylphenols 2014 , 577-612		1
110	First evidence for toxic defense based on the multixenobiotic resistance (MXR) mechanism in Daphnia magna. <i>Aquatic Toxicology</i> , 2014 , 148, 139-51	5.1	37
109	Decontamination of polycyclic aromatic hydrocarbons and nonylphenol from sewage sludge using hydroxypropyl-Ecyclodextrin and evaluation of the toxicity of leachates. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 507-17	5.1	21
108	Separating natural from anthropogenic causes of impairment in Zebra mussel (Dreissena polymorpha) populations living across a pollution gradient. <i>Aquatic Toxicology</i> , 2014 , 152, 82-95	5.1	18
107	Identification of metabolic pathways in Daphnia magna explaining hormetic effects of selective serotonin reuptake inhibitors and 4-nonylphenol using transcriptomic and phenotypic responses. <i>Environmental Science & Environmental Science & Environ</i>	10.3	52
106	Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment. <i>Environment International</i> , 2013 , 59, 232-43	12.9	206
105	Heavy metal content in oysters (Crassostrea gigas) cultured in the Ebro Delta in Catalonia, Spain. <i>Environmental Monitoring and Assessment</i> , 2013 , 185, 6783-92	3.1	15
104	Genetic and phenoptypic differentiation of zebra mussel populations colonizing Spanish river basins. <i>Ecotoxicology</i> , 2013 , 22, 915-28	2.9	10
103	Bioaccumulation and effects of perfluorinated compounds (PFCs) in zebra mussels (Dreissena polymorpha). <i>Environmental Science and Pollution Research</i> , 2013 , 20, 2661-9	5.1	28
102	Transcriptomic seasonal variations in a natural population of zebra mussel (Dreissena polymorpha). <i>Science of the Total Environment</i> , 2013 , 454-455, 482-9	10.2	12

101	Responses of B-esterase enzymes in oysters (Crassostrea gigas) transplanted to pesticide contaminated bays form the Ebro Delta (NE, Spain). <i>Marine Pollution Bulletin</i> , 2013 , 66, 135-42	6.7	13
100	Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna. <i>Aquatic Toxicology</i> , 2013 , 130-131, 174-83	5.1	50
99	Effects of the pharmaceutical fluoxetine in spiked-sediments on feeding activity and growth of the polychaete Capitella teleta. <i>Marine Environmental Research</i> , 2013 , 89, 76-82	3.3	19
98	Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo. <i>Toxicology and Applied Pharmacology</i> , 2013 , 269, 169-75	4.6	9
97	Organic carbon content effects on bioavailability of pyrethroid insecticides and validation of solid phase extraction with Poly (2,6-diphenyl-p-phenylene oxide) Polymer by Daphnia magna toxicity tests. <i>Science of the Total Environment</i> , 2013 , 442, 497-502	10.2	11
96	Retinoic acid receptorsSexpression and function during zebrafish early development. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2013 , 138, 143-51	5.1	22
95	The combined use of metrics of biological quality and biomarkers to detect the effects of reclaimed water on macroinvertebrate assemblages in the lower part of a polluted Mediterranean river (Llobregat River, NE Spain). <i>Ecological Indicators</i> , 2013 , 24, 167-176	5.8	18
94	Deciphering Emerging Toxicological Effects of Pharmaceuticals on Aquatic Organisms by Using Daphnia magna and Danio rerio as Model Organisms. <i>Comprehensive Analytical Chemistry</i> , 2013 , 62, 611	-647	5
93	Mechanisms of action of selective serotonin reuptake inhibitors in Daphnia magna. <i>Environmental Science & Environmental Scien</i>	10.3	60
92	Are pesticide residues associated to rice production affecting oyster production in Delta del Ebro, NE Spain?. <i>Science of the Total Environment</i> , 2012 , 437, 209-18	10.2	21
91	Low environmental levels of fluoxetine induce spawning and changes in endogenous estradiol levels in the zebra mussel Dreissena polymorpha. <i>Aquatic Toxicology</i> , 2012 , 106-107, 123-30	5.1	62
90	Enhanced offspring production in Daphnia magna clones exposed to serotonin reuptake inhibitors and 4-nonylphenol. Stage- and food-dependent effects. <i>Aquatic Toxicology</i> , 2012 , 109, 100-10	5.1	44
89	Abcb and Abcc transporter homologs are expressed and active in larvae and adults of zebra mussel and induced by chemical stress. <i>Aquatic Toxicology</i> , 2012 , 122-123, 144-52	5.1	38
88	A system for the detection of pigment network in dermoscopy images using directional filters. <i>IEEE Transactions on Biomedical Engineering</i> , 2012 , 59, 2744-54	5	90
87	Environmental hazards of pesticides from pineapple crop production in the RB JimBez watershed (Caribbean Coast, Costa Rica). <i>Science of the Total Environment</i> , 2012 , 440, 106-14	10.2	39
86	Advances in the Multibiomarker Approach for Risk Assessment in Aquatic Ecosystems. <i>Handbook of Environmental Chemistry</i> , 2012 , 147-179	0.8	7
85	Population growth rate responses of Ceriodaphnia dubia to ternary mixtures of specific acting chemicals: pharmacological versus ecotoxicological modes of action. <i>Environmental Science & Technology</i> , 2012 , 46, 9663-72	10.3	13
84	Human Pressure and Its Effects on Water Quality and Biota in the Llobregat River. <i>Handbook of Environmental Chemistry</i> , 2012 , 297-325	0.8	5

(2010-2012)

83	Newly Developed Approaches Using Biofilms and Invertebrates. <i>Handbook of Environmental Chemistry</i> , 2012 , 219-241	0.8	2	
82	Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants. <i>Aquatic Toxicology</i> , 2011 , 101, 78-87	5.1	65	
81	A genomic and ecotoxicological perspective of DNA array studies in aquatic environmental risk assessment. <i>Aquatic Toxicology</i> , 2011 , 105, 40-9	5.1	65	
80	Multi-biochemical responses of benthic macroinvertebrate species as a complementary tool to diagnose the cause of community impairment in polluted rivers. <i>Water Research</i> , 2011 , 45, 3599-613	12.5	52	
79	Disrupting Effects of Single and Combined Emerging Pollutants on Thyroid Gland Function. Handbook of Environmental Chemistry, 2011 , 415-433	0.8		
78	Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults. <i>Environmental Pollution</i> , 2011 , 159, 100-107	9.3	59	
77	Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain). <i>Chemosphere</i> , 2011 , 84, 1642-9	8.4	56	
76	Are pharmaceuticals more harmful than other pollutants to aquatic invertebrate species: a hypothesis tested using multi-biomarker and multi-species responses in field collected and transplanted organisms. <i>Chemosphere</i> , 2011 , 85, 1548-54	8.4	41	
75	Life-history consequences of adaptation to pollution. "Daphnia longispina clones historically exposed to copper". <i>Ecotoxicology</i> , 2011 , 20, 552-62	2.9	37	
74	An introduction to evolutionary processes in ecotoxicology. <i>Ecotoxicology</i> , 2011 , 20, 493-6	2.9	35	
73	The use of Daphnia magna immobilization tests and soil microcosms to evaluate the toxicity of dredged sediments. <i>Journal of Soils and Sediments</i> , 2011 , 11, 373-381	3.4	10	
72	Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. <i>Environmental Science & Environmental Science &</i>	10.3	73	
71	Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. <i>Desalination</i> , 2011 , 269, 136-141	10.3	157	
70	Biological Effects of Chemical Pollution in Feral Fish and Shellfish Populations from Ebro River: From Molecular to Individual Level Responses. <i>Handbook of Environmental Chemistry</i> , 2010 , 275-293	0.8		
69	Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. <i>Ecotoxicology and Environmental Safety</i> , 2010 , 73, 280-6	7	92	
68	Evaluation of side-effects of glyphosate mediated control of giant reed (Arundo donax) on the structure and function of a nearby Mediterranean river ecosystem. <i>Environmental Research</i> , 2010 , 110, 556-64	7.9	39	
67	Contaminant accumulation and multi-biomarker responses in field collected zebra mussels (Dreissena polymorpha) and crayfish (Procambarus clarkii), to evaluate toxicological effects of industrial hazardous dumps in the Ebro river (NE Spain). <i>Chemosphere</i> , 2010 , 78, 232-40	8.4	81	
66	Screening of perfluorinated chemicals (PFCs) in various aquatic organisms. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 398, 1447-56	4.4	47	

65	Identifying major pesticides affecting bivalve species exposed to agricultural pollution using multi-biomarker and multivariate methods. <i>Ecotoxicology</i> , 2010 , 19, 1084-94	2.9	52
64	Ecotoxicological effects of rice field waters on selected planktonic species: comparison between conventional and organic farming. <i>Ecotoxicology</i> , 2010 , 19, 1523-35	2.9	18
63	Comparative toxicity of single and combined mixtures of selected pollutants among larval stages of the native freshwater mussels (Unio elongatulus) and the invasive zebra mussel (Dreissena polymorpha). <i>Science of the Total Environment</i> , 2010 , 408, 2452-8	10.2	22
62	Integrated biological and chemical analysis of organochlorine compound pollution and of its biological effects in a riverine system downstream the discharge point. <i>Science of the Total Environment</i> , 2010 , 408, 5592-9	10.2	22
61	Blood biomarkers and contaminant levels in feathers and eggs to assess environmental hazards in heron nestlings from impacted sites in Ebro basin (NE Spain). <i>Environmental Pollution</i> , 2010 , 158, 704-10	09.3	30
60	Are native naiads more tolerant to pollution than exotic freshwater bivalve species? An hypothesis tested using physiological responses of three species transplanted to mercury contaminated sites in the Ebro River (NE, Spain). <i>Chemosphere</i> , 2010 , 81, 1218-26	8.4	17
59	Genetic costs of tolerance to metals in Daphnia longispina populations historically exposed to a copper mine drainage. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 939-46	3.8	41
58	Forecasting risk along a river basin using a probabilistic and deterministic model for environmental risk assessment of effluents through ecotoxicological evaluation and GIS. <i>Science of the Total Environment</i> , 2009 , 408, 294-303	10.2	7
57	Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2009 , 149, 281-8	3.2	53
56	Lethal and sublethal effects of naphthalene and 1,2-dimethylnaphthalene on naupliar and adult stages of the marine cyclopoid copepod Oithona davisae. <i>Environmental Pollution</i> , 2009 , 157, 1219-26	9.3	54
55	Physiological responses to mercury in feral carp populations inhabiting the low Ebro River (NE Spain), a historically contaminated site. <i>Aquatic Toxicology</i> , 2009 , 93, 150-7	5.1	60
54	Single and combined toxicity of pharmaceuticals and personal care products (PPCPs) on the rainbow trout liver cell line RTL-W1. <i>Aquatic Toxicology</i> , 2009 , 93, 244-52	5.1	93
53	Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry. <i>Aquatic Toxicology</i> , 2009 , 94, 16-27	5.1	46
52	Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. <i>Environmental Science & Environmental Science & </i>	10.3	115
51	A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for Environmental Risk Assessment of toxic effluents. <i>Science of the Total Environment</i> , 2008 , 405, 78-8	6 ^{10.2}	64
50	Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain). <i>Aquatic Toxicology</i> , 2008 , 87, 310-20	5.1	63
49	Analysis of 17 polar to semi-polar pesticides in the Ebro river delta during the main growing season of rice by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. <i>Talanta</i> , 2008 , 75, 390-401	6.2	90
48	First evidence of polybrominated diphenyl ether (flame retardants) effects in feral barbel from the Ebro River basin (NE, Spain). <i>Chemosphere</i> , 2008 , 73, 56-64	8.4	27

47	Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 370-9	3.8	93
46	Lethal and sublethal effects of naphthalene and 1,2-dimethylnaphthalene on the marine copepod Paracartia grani. <i>Marine Biology</i> , 2007 , 151, 195-204	2.5	51
45	Life-history responses of Daphnia magna Straus to binary mixtures of toxic substances: pharmacological versus ecotoxicological modes of action. <i>Aquatic Toxicology</i> , 2007 , 84, 439-49	5.1	34
44	Comparing the response of biochemical indicators (biomarkers) and biological indices to diagnose the ecological impact of an oil spillage in a Mediterranean river (NE Catalunya, Spain). <i>Chemosphere</i> , 2007 , 66, 1206-16	8.4	43
43	Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. <i>Chemosphere</i> , 2007 , 67, 2105-14	8.4	170
42	Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. <i>Chemosphere</i> , 2007 , 70, 74-82	8.4	40
41	Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. <i>Aquatic Toxicology</i> , 2006 , 78, 1-14	5.1	164
40	Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus. <i>Aquatic Toxicology</i> , 2006 , 79, 296-303	5.1	20
39	Changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in Daphnia magna during the aging process. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , 2005 , 140, 81-90	2.3	107
38	Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2005 , 140, 175-86	3.2	146
37	Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae Hydropsyche exocellata from the Llobregat river basin (NE Spain). <i>Aquatic Toxicology</i> , 2005 , 74, 3-19	5.1	131
36	Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepod Oithona davisae. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2992-9	3.8	84
35	Endocrine-Disrupting Compounds in Wastewater, Sludge-Treatment Processes, and Receiving Waters: Overview. <i>Practice Periodical of Hazardous, Toxic and Radioactive Waste Management</i> , 2004 , 8, 39-56		32
34	Experimental designs to assess endocrine disrupting effects in invertebrates. A review. <i>Ecotoxicology</i> , 2004 , 13, 511-7	2.9	58
33	Assessing the risks to zooplankton grazers of continuous versus pulsed cypermethrin exposures from marine cage aquaculture. <i>Archives of Environmental Contamination and Toxicology</i> , 2004 , 47, 67-73	3.2	8
32	Effects of cypermethrin on marine plankton communities: a simulated field study using mesocosms. <i>Ecotoxicology and Environmental Safety</i> , 2004 , 58, 236-45	7	29
31	Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. <i>Aquatic Toxicology</i> , 2004 , 66, 125-39	5.1	209
30	Static-renewal culture of Acartia tonsa (Copepoda: Calanoida) for ecotoxicological testing. Aquaculture, 2004 , 229, 203-213	4.4	45

29	Among- and within-population variability in tolerance to cadmium stress in natural populations of Daphnia magna: Implications for ecological risk assessment. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1058-1064	3.8	68
28	Determining demographic effects of cypermethrin in the marine copepod Acartia tonsa: stage-specific short tests versus life-table tests. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 43, 373-8	3.2	31
27	Age- and sex-related variation in sensitivity to the pyrethroid cypermethrin in the marine copepod Acartia tonsa Dana. <i>Archives of Environmental Contamination and Toxicology</i> , 2002 , 42, 17-22	3.2	80
26	A rapid response toxicity test based on the feeding rate of the tropical cladoceran Moinodaphnia macleayi. <i>Ecotoxicology and Environmental Safety</i> , 2002 , 53, 12-9	7	10
25	Genetic variability in sublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus. <i>Aquatic Toxicology</i> , 2002 , 60, 85-99	5.1	50
24	The relative importance of water and food as cadmium sources to Daphnia magna Straus. <i>Aquatic Toxicology</i> , 2002 , 61, 143-54	5.1	69
23	DEMOGRAPHIC RESPONSES OF A TROPICAL CLADOCERAN TO CADMIUM: EFFECTS OF FOOD SUPPLY AND DENSITY 2002 , 12, 552-564		32
22	Determining genetic variability in the distribution of sensitivities to toxic stress among and within field populations of Daphnia magna. <i>Environmental Science & Environmental Science & Environment</i>	10.3	41
21	. Environmental Toxicology and Chemistry, 2002 , 21, 1058	3.8	3
20	Determining the ecotoxicological mode of action of toxic chemicals in meiobenthic marine organisms: stage-specific short tests with Tisbe battagliai. <i>Marine Ecology - Progress Series</i> , 2002 , 230, 183-194	2.6	40
19	Among- and within-population variability in tolerance to cadmium stress in natural populations of Daphnia magna: implications for ecological risk assessment. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1058-64	3.8	19
18	Phenotypic plasticity in Daphnia magna Straus: variable maturation instar as an adaptive response to predation pressure. <i>Oecologia</i> , 2001 , 129, 220-227	2.9	34
17	Biochemical factors contributing to response variation among resistant and sensitive clones of Daphnia magna Ssraus exposed to ethyl parathion. <i>Ecotoxicology and Environmental Safety</i> , 2001 , 49, 155-63	7	42
16	Do genotype responses always converge from lethal to nonlethal toxicant exposure levels? Hypothesis tested using clones of Daphnia magna straus. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 2314-2322	3.8	54
15	Comparing population response to contaminants between laboratory and field: an approach using Daphnia magna ephippial egg banks. <i>Functional Ecology</i> , 2000 , 14, 513-523	5.6	34
14	Determining the ecotoxicological mode of action of chemicals from measurements made on individuals: results from instar-based tests with Daphnia magna Straus. <i>Aquatic Toxicology</i> , 2000 , 48, 195-209	5.1	132
13	. Environmental Toxicology and Chemistry, 2000 , 19, 2314	3.8	3
12	Comparing metal toxicity among Daphnia magna clones: an approach using concentration-time-response surfaces. <i>Archives of Environmental Contamination and Toxicology</i> , 1999 , 37, 326-31	3.2	22

LIST OF PUBLICATIONS

11	Stress in Ecological Systems. <i>Oikos</i> , 1999 , 86, 179	4	34	
10	Phenotypic plasticity and constancy of life-history traits in laboratory clones of Daphnia magna Straus: effects of neonatal length. <i>Functional Ecology</i> , 1998 , 12, 442-452	5.6	65	
9	Influence of genetic and environmental factors on the tolerance of Daphnia magna Straus to essential and non-essential metals <i>Aquatic Toxicology</i> , 1998 , 42, 115-137	5.1	124	
8	Variability in the response of Daphnia clones to toxic substances: are safety margins being compromised?. <i>Archives of Toxicology Supplement</i> , 1998 , 20, 399-406		9	
7	Estimation of the biomass production of Artemia with regard to its use in aquaculture: Temperature and strain effects. <i>Aquaculture</i> , 1996 , 142, 171-189	4.4	10	
6	Competition between sexual and parthenogenetic Artemia: temperature and strain effects. <i>Journal of Experimental Marine Biology and Ecology</i> , 1996 , 196, 313-328	2.1	34	
5	Demographic parameters of sexual and parthenogenetic Artemia: temperature and strain effects. Journal of Experimental Marine Biology and Ecology, 1996 , 196, 329-340	2.1	17	
4	Life history, resting egg formation, and hatching may explain the temporal-geographical distribution of Artemia strains in the Mediterranean basin. <i>Hydrobiologia</i> , 1995 , 298, 295-305	2.4	13	
3	A Mediterranean Origin for the Veldrif (South Africa) Artemia Leach Population. <i>Journal of Biogeography</i> , 1995 , 22, 49	4.1	14	
2	Biogeography of the genusArtemia (Crustacea, Branchiopoda, Anostraca) in Spain. <i>International Journal of Salt Lake Research</i> , 1994 , 3, 175-190		35	
1	Exposure to Mercury: A Critical Assessment of Adverse Ecological and Human Health Effects343-371		1	