List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4004538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and densification of (Zr-Hf-Nb-Ta)C-Co high entropy cermet prepared by pressureless melt infiltration using spark plasma sintering. Journal of Alloys and Compounds, 2022, 900, 163412.	2.8	11
2	Synthesis, microstructure, and mechanical properties of novel high entropy carbonitrides. Acta Materialia, 2022, 231, 117887.	3.8	31
3	Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si ₃ N ₄ nano/micro composite after high-temperature treatment. International Journal of Materials Research, 2022, 97, 772-777.	0.1	0
4	The role of Cr addition on the processing and mechanical properties of high entropy carbides. Journal of the European Ceramic Society, 2022, 42, 5273-5279.	2.8	13
5	Preparation and Properties of Layered SiC-Graphene Composites for EDM. Materials, 2021, 14, 2916.	1.3	3
6	Tribology of Si3N4 containing in-situ grown Si2N2O processed from oxidized α - Si3N4 powders. Ceramics International, 2021, 47, 17417-17426.	2.3	7
7	Influence of hexagonal boron nitride nanosheets on phase transformation, microstructure evolution and mechanical properties of Si3N4 ceramics. Journal of the European Ceramic Society, 2021, 41, 5115-5126.	2.8	14
8	Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide. Journal of the European Ceramic Society, 2021, 41, 5417-5426.	2.8	60
9	WC+Co+graphene platelet composites with improved mechanical, tribological and thermal properties. Ceramics International, 2021, 47, 30852-30859.	2.3	15
10	Hardness anisotropy and active slip systems in a (Hf-Ta-Zr-Nb)C high-entropy carbide during nanoindentation. International Journal of Refractory Metals and Hard Materials, 2021, 100, 105646.	1.7	13
11	Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy. Nanomaterials, 2021, 11, 285.	1.9	3
12	Improved creep resistance of high entropy transition metal carbides. Journal of the European Ceramic Society, 2020, 40, 2709-2715.	2.8	87
13	Anisotropic dislocation nucleation in ZrB2 grains and deformation behaviour of constituents of ZrB2-SiC and ZrB2-B4C composites during nanoindentation. Journal of the European Ceramic Society, 2020, 40, 2674-2682.	2.8	11
14	Deformation and fracture of WC grains and grain boundaries in a WC-Co hardmetal during microcantilever bending tests. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105163.	1.7	22
15	Enhanced Hardness in Highâ€Entropy Carbides through Atomic Randomness. Advanced Theory and Simulations, 2020, 3, 2000111.	1.3	68
16	Micro scale fracture strength of grains and grain boundaries in polycrystalline La-doped β-Si3N4 ceramics. Journal of the European Ceramic Society, 2020, 40, 4783-4791.	2.8	9
17	Nanoindentation and tribology of ZrB2 based luminescent ceramics. Journal of the European Ceramic Society, 2020, 40, 4901-4908.	2.8	12
18	Small scale fracture and strength of high-entropy carbide grains during microcantilever bending experiments. Journal of the European Ceramic Society, 2020, 40, 4774-4782.	2.8	32

#	Article	IF	CITATIONS
19	Silicon Nitride-Based Composites with the Addition of CNTs—A Review of Recent Progress, Challenges, and Future Prospects. Materials, 2020, 13, 2799.	1.3	6
20	Mechanical and tribological properties of TiB2-SiC and TiB2-SiC-GNPs ceramic composites. Journal of the European Ceramic Society, 2020, 40, 4860-4871.	2.8	38
21	Preparation, friction, wear, and fracture of the Si3N4-Ag-GNPs composites prepared by SPS. Journal of the European Ceramic Society, 2020, 40, 4853-4859.	2.8	17
22	Properties of MWCNTs added Si3N4 composites processed from oxidized silicon nitride powders. Processing and Application of Ceramics, 2020, 14, 25-31.	0.4	3
23	Microstructure and selected properties of Ni-Cr-Re coatings deposited by means of plasma thermal spraying. PrzeglÄd Spawalnictwa, 2020, 92, 15-23.	0.5	0
24	Strength enhancement and slip behaviour of high-entropy carbide grains during micro-compression. Scientific Reports, 2019, 9, 10200.	1.6	81
25	Curcumin-Containing Orthopedic Implant Coatings Deposited on Poly-Ether-Ether-Ketone/Bioactive Glass/Hexagonal Boron Nitride Layers by Electrophoretic Deposition. Coatings, 2019, 9, 572.	1.2	39
26	Anomalous slip of ZrB2 ceramic grains during in-situ micropillar compression up to 500â€ [–] °C. International Journal of Refractory Metals and Hard Materials, 2019, 80, 270-276.	1.7	7
27	Small-Scale Mechanical Testing of Cemented Carbides from the Micro- to the Nano-Level: A Review. Metals, 2019, 9, 502.	1.0	18
28	Wear resistance of ZrB2 based ceramic composites. International Journal of Refractory Metals and Hard Materials, 2019, 81, 214-224.	1.7	42
29	The effect of graphene nanoplatelet thickness on the fracture toughness of Si3N4 composites. Ceramics International, 2019, 45, 6858-6862.	2.3	26
30	Flash spark plasma sintering of 3YSZ. Journal of the European Ceramic Society, 2019, 39, 1932-1937.	2.8	15
31	Design of Electroactive Carbon Fibers Decorated with Metal and Metalâ€Phosphide Nanoparticles for Hydrogen Evolution Technology. Energy Technology, 2018, 6, 1310-1331.	1.8	13
32	Anisotropic slip activation via homogeneous dislocation nucleation in ZrB2 ceramic grains during nanoindentation. Scripta Materialia, 2018, 152, 89-93.	2.6	13
33	Investigation of anisotropic mechanical properties of textured <scp>KS</scp> r ₂ Nb ₅ O ₁₅ ceramics via abâ€initio calculation and nanoindentation. Journal of the American Ceramic Society, 2018, 101, 5138-5150.	1.9	20
34	Thermal Shock Resistance of Si ₃ N ₄ /hBN Ceramic Composites. Key Engineering Materials, 2018, 784, 73-78.	0.4	1
35	Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. Journal of the European Ceramic Society, 2018, 38, 4303-4307.	2.8	167
36	Effect of Mechanochemically Functionalized Multilayer Graphene on the Tribological Properties of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment. Tribology Letters, 2018, 66, 1.	1.2	11

#	Article	IF	CITATIONS
37	Processing and Properties of High-Entropy Ultra-High Temperature Carbides. Scientific Reports, 2018, 8, 8609.	1.6	506
38	Fracture characteristics of SiC/graphene platelet composites. Journal of the European Ceramic Society, 2017, 37, 4307-4314.	2.8	45
39	Boron carbide/graphene platelet ceramics with improved fracture toughness and electrical conductivity. Journal of the European Ceramic Society, 2017, 37, 3773-3780.	2.8	55
40	Mechanical properties and sliding wear behaviour of Al2O3-SiC nanocomposites with 3–20 vol% SiC. Journal of the European Ceramic Society, 2017, 37, 4297-4306.	2.8	35
41	Nanoindentation derived elastic constants of carbon fibres and their nanostructural based predictions. Carbon, 2017, 119, 314-325.	5.4	41
42	Fractography of Advanced Ceramics V "Fractography from MACRO- to NANO-scale― Journal of the European Ceramic Society, 2017, 37, 4241-4242.	2.8	1
43	Anisotropy of functional properties of SiC composites with GNPs, GO and in-situ formed graphene. Journal of the European Ceramic Society, 2017, 37, 3731-3739.	2.8	33
44	Si 3 N 4 /graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. Journal of the European Ceramic Society, 2017, 37, 3797-3804.	2.8	39
45	Orientation-dependent nanoscratch resistance of zirconium diboride ceramic grains. International Journal of Refractory Metals and Hard Materials, 2017, 65, 45-51.	1.7	10
46	Effect of graphene platelets on tribological properties of boron carbide ceramic composites. International Journal of Refractory Metals and Hard Materials, 2017, 65, 57-63.	1.7	45
47	Slip activation controlled nanohardness anisotropy of ZrB2 ceramic grains. Acta Materialia, 2017, 140, 452-464.	3.8	25
48	Highly wear-resistant and low-friction Si3N4 composites by addition of graphene nanoplatelets approaching the 2D limit. Scientific Reports, 2017, 7, 10087.	1.6	33
49	Nanoindentation induced deformation anisotropy in β-Si 3 N 4 ceramic crystals. Journal of the European Ceramic Society, 2016, 36, 3059-3066.	2.8	23
50	Preparation and characterization of ceramic nanofibers based on lanthanum tantalates. Journal of Sol-Gel Science and Technology, 2016, 78, 322-330.	1.1	6
51	Oxidation resistance of SiC ceramics prepared by different proceessing routes. Journal of the European Ceramic Society, 2016, 36, 3783-3793.	2.8	44
52	Plasticity in ZrB2 micropillars induced by anomalous slip activation. Journal of the European Ceramic Society, 2016, 36, 389-394.	2.8	27
53	Additive-free hot-pressed silicon carbide ceramics—A material with exceptional mechanical properties. Journal of the European Ceramic Society, 2016, 36, 1333-1341.	2.8	43
54	Anisotropy in thermal properties of boron carbide–graphene platelet composites. Journal of the European Ceramic Society, 2016, 36, 3051-3057.	2.8	32

#	Article	IF	CITATIONS
55	Nanohardness and elastic anisotropy of ZrB 2 crystals. Journal of the European Ceramic Society, 2016, 36, 239-242.	2.8	31
56	High orientation degree of graphene nanoplatelets in silicon nitride composites prepared by spark plasma sintering. Ceramics International, 2016, 42, 1002-1006.	2.3	44
57	Mechanical properties of boron carbide+graphene platelet composites. Ceramics International, 2016, 42, 2094-2098.	2.3	43
58	Anisotropic nanoscratch resistance of WC grains in WC–Co composite. International Journal of Refractory Metals and Hard Materials, 2015, 51, 188-191.	1.7	16
59	Deformation and Fracture of βâ€Silicon Nitride Micropillars. Journal of the American Ceramic Society, 2015, 98, 374-377.	1.9	12
60	Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals. Acta Materialia, 2015, 83, 397-407.	3.8	107
61	Indentation hardness and fatigue of the constituents of WC–Co composites. International Journal of Refractory Metals and Hard Materials, 2015, 49, 178-183.	1.7	19
62	Indentation fatigue of WC grains in WC–Co composite. Journal of the European Ceramic Society, 2014, 34, 3407-3412.	2.8	32
63	Effect of the volume fraction of SiC on the microstructure and creep behavior of hot pressed Al2O3/SiC composites. Ceramics International, 2014, 40, 1807-1814.	2.3	26
64	Deformation characteristics of WC micropillars. Journal of the European Ceramic Society, 2014, 34, 4099-4103.	2.8	61
65	Effect of the counterpart material on wear characteristics of silicon carbide ceramics. International Journal of Refractory Metals and Hard Materials, 2014, 44, 12-18.	1.7	40
66	Effect of homogenization treatment on the fracture behaviour of silicon nitride/graphene nanoplatelets composites. Journal of the European Ceramic Society, 2014, 34, 3291-3299.	2.8	34
67	Tribological properties of silica–graphene nano-platelet composites. Ceramics International, 2014, 40, 12067-12074.	2.3	80
68	Wear damage of Si3N4-graphene nanocomposites at room and elevated temperatures. Journal of the European Ceramic Society, 2014, 34, 3309-3317.	2.8	42
69	Influence of hBN content on mechanical and tribological properties of Si3N4/BN ceramic composites. Journal of the European Ceramic Society, 2014, 34, 3319-3328.	2.8	60
70	Thermal shock resistance of Si3N4 and Si3N4–SiC ceramics with rare-earth oxide sintering additives. Journal of the European Ceramic Society, 2014, 34, 3301-3308.	2.8	40
71	Indentation fatigue of WC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 2013, 41, 229-235.	1.7	26
72	Tribological properties of Si3N4–graphene nanocomposites. Journal of the European Ceramic Society, 2013, 33, 2359-2364.	2.8	125

#	Article	IF	CITATIONS
73	Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures. Ceramics International, 2013, 39, 5821-5826.	2.3	80
74	Nanohardness and tribological properties of nc-TiB2 coatings. Journal of the European Ceramic Society, 2013, 33, 2347-2353.	2.8	47
75	Nanoindentation of WC–Co hardmetals. Journal of the European Ceramic Society, 2013, 33, 2227-2232.	2.8	66
76	Influence of rare-earth oxide additives and SiC nanoparticles on the wear behaviour of Si3N4-based composites at temperatures up to 900°C. Wear, 2013, 300, 155-162.	1.5	29
77	Influence of processing on fracture toughness of Si3N4+graphene platelet composites. Journal of the European Ceramic Society, 2013, 33, 2299-2304.	2.8	43
78	Microstructure and mechanical properties of hot pressed Al2O3/SiC nanocomposites. Journal of the European Ceramic Society, 2013, 33, 2291-2298.	2.8	56
79	Influence of rare-earth oxide additives on the oxidation resistance of Si3N4–SiC nanocomposites. Journal of the European Ceramic Society, 2013, 33, 2259-2268.	2.8	34
80	Mechanical Properties of Porous Si ₃ N ₄ Ceramics. Key Engineering Materials, 2013, 586, 166-169.	0.4	1
81	Bending and Contact Strength of Monolithic Ceramic Materials. International Journal of Damage Mechanics, 2012, 21, 293-305.	2.4	2
82	Nanoindentation, AFM and tribological properties of thin nc-WC/a-C Coatings. Journal of the European Ceramic Society, 2012, 32, 2043-2051.	2.8	26
83	Tribological and electrical properties of ceramic matrix composites with carbon nanotubes. Ceramics International, 2012, 38, 5669-5676.	2.3	52
84	Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite. Ceramics International, 2012, 38, 527-533.	2.3	41
85	Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Materialia, 2012, 66, 793-796.	2.6	191
86	Microstructure and fracture toughness of Si3N4+graphene platelet composites. Journal of the European Ceramic Society, 2012, 32, 3389-3397.	2.8	151
87	Effect of Ce and La substitution on dielectric properties of bismuth titanate ceramics. Ceramics International, 2011, 37, 487-492.	2.3	40
88	Tribological behavior of carbon nanofiber–zirconia composite. Scripta Materialia, 2010, 63, 254-257.	2.6	34
89	Effect of the specimen size on strength of Si3N4+SiC composite. Journal of the European Ceramic Society, 2010, 30, 1059-1065.	2.8	9
90	Rare-earth element doped Si3N4/SiC micro/nano-composites—RT and HT mechanical properties. Journal of the European Ceramic Society, 2010, 30, 1931-1944.	2.8	45

#	Article	IF	CITATIONS
91	Contact strength and crack formation in monolithic ceramic materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1179-1184.	2.6	1
92	Influence of various rare-earth oxide additives on microstructure and mechanical properties of silicon nitride based nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4771-4778.	2.6	37
93	Wear resistance of hot-pressed Si3N4/SiC micro/nanocomposites sintered with rare-earth oxide additives. Wear, 2010, 269, 867-874.	1.5	46
94	Indentation Load-Size Effect in Al2O3 — SIC Nanocomposites. Journal of Electrical Engineering, 2010, 61, 305-307.	0.4	11
95	Characterization of rare-earth doped Si3N4/SiC micro/nanocomposites. Processing and Application of Ceramics, 2010, 4, 25-32.	0.4	7
96	Comparison of R-Curve Behavior of Si ₃ N ₄ Measured by Indentation Method and Single-Edge V-Notched Beam Technique (SEVNB). Key Engineering Materials, 2009, 409, 308-312.	0.4	0
97	Contact and Bending Strength Tests of Ceramics: What is the Difference?. Key Engineering Materials, 2009, 409, 185-192.	0.4	0
98	Characterization of interfaces in ZrO2–carbon nanofiber composite. Scripta Materialia, 2009, 61, 253-256.	2.6	7
99	Mechanical properties of carbon-derived Si3N4+SiC micro/nano-composite. International Journal of Refractory Metals and Hard Materials, 2009, 27, 438-442.	1.7	14
100	Microstructure and Creep Behavior of a Si ₃ N ₄ –SiC Micronanocomposite. Journal of the American Ceramic Society, 2009, 92, 439-444.	1.9	11
101	Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites. Journal of the European Ceramic Society, 2009, 29, 3177-3184.	2.8	92
102	Thermal shock resistance and fracture toughness of liquid-phase-sintered SiC-based ceramics. Journal of the European Ceramic Society, 2009, 29, 2387-2394.	2.8	73
103	Bending and Contact Strength of a Si ₃ N ₄ +SiC Micro/Nano Composite. Materials Science Forum, 2008, 567-568, 177-180.	0.3	0
104	Microstructure and properties of carbon nanotube/zirconia composite. Journal of the European Ceramic Society, 2008, 28, 1023-1027.	2.8	114
105	Zirconia/carbon nanofiber composite. Scripta Materialia, 2008, 58, 520-523.	2.6	66
106	Qualitative and Quantitative Fractographic Analysis of Dynamically Impacted Si ₃ N ₄ Ceramics. Materials Science Forum, 2008, 589, 73-78.	0.3	1
107	High Temperature Behavior of Coatings and Layered Ceramics. Key Engineering Materials, 2007, 333, 167-176.	0.4	0
108	A silicon nitride reference material—A testing program of ESIS TC6. Journal of the European Ceramic Society, 2007, 27, 1203-1209.	2.8	47

#	Article	IF	CITATIONS
109	Fractographic Montage for a Si3N4-SiC Nanocomposite. Journal of the American Ceramic Society, 2006, 89, 1752-1755.	1.9	5
110	Microstructure and fracture-mechanical properties of carbon derived Si3N4+SiC nanomaterials. Materials Science and Engineering C, 2006, 26, 862-866.	3.8	14
111	Low Cost Si ₃ N ₄ /SiC Nanocomposites, Processing, RT and HT Properties. Key Engineering Materials, 2006, 317-318, 185-190.	0.4	0
112	Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment. International Journal of Materials Research, 2006, 97, 772-777.	0.1	4
113	Si _{3O_{4 and Al_{2O_{3 based ceramic. International Journal of Materials and Product Technology, 2005, 23, 91.}}}}	0.1	5
114	On the use of fractal geometry methods for the wear process characterization. Wear, 2005, 258, 1462-1465.	1.5	11
115	Enhanced Creep Resistant Silicon-Nitride-Based Nanocomposite. Journal of the American Ceramic Society, 2005, 88, 1500-1503.	1.9	20
116	A Contribution of Fractal Geometry to Characterization of Wear Process. Key Engineering Materials, 2005, 290, 276-279.	0.4	1
117	Indentation Testing of MoSi ₂ . Key Engineering Materials, 2005, 290, 288-291.	0.4	1
118	Residual Stresses in Al ₂ O ₃ -ZrO ₂ Laminar System. Key Engineering Materials, 2005, 290, 264-267.	0.4	1
119	Indentation Testing of an Al ₂ O ₃ /Al ₂ O ₃ + ZrO ₂ Layered Composite. Key Engineering Materials, 2005, 290, 316-319.	0.4	0
120	Labeled Weibull Plot of a C-Derived Si ₃ N ₄ -SiC Nanocomposite. Key Engineering Materials, 2005, 290, 292-295.	0.4	0
121	Some tribological properties of a carbon-derived Si3N4/SiC nanocomposite. Journal of the European Ceramic Society, 2004, 24, 3431-3435.	2.8	30
122	Creep behavior of a carbon-derived Si3N4/SiC nanocomposite. Journal of the European Ceramic Society, 2004, 24, 3307-3315.	2.8	26
123	Fracture and Mechanical Properties of MoSi ₂ and MoSi ₂ + SiC. Key Engineering Materials, 2003, 251-252, 13-18.	0.4	1
124	Low Cost SiC/Si ₃ N ₄ Nanocomposites. Key Engineering Materials, 2002, 206-213, 1061-1064.	0.4	9
125	Mechanical Properties of Recently Developed Si ₃ N ₄ -SiC Nanocomposite. Key Engineering Materials, 2002, 223, 233-236.	0.4	2
126	Creep Mechanism of SiCN-Derived Nano/Micro Composite. Key Engineering Materials, 2002, 223, 201-208.	0.4	4

#	Article	IF	CITATIONS
127	Microfractography of Advanced Ceramics. Key Engineering Materials, 2002, 223, 107-118.	0.4	1
128	Notch Sensitivity of Two C-SiC Fibre-Reinforced Ceramics. Key Engineering Materials, 2002, 223, 125-130.	0.4	0
129	Dynamic Fatigue and Fracture Toughness of Si ₃ N ₄ + SiC Nanocomposite at 1350°C. Key Engineering Materials, 2000, 175-176, 311-320.	0.4	7
130	Fractographic failure analysis of brittle materials. International Journal of Materials and Product Technology, 2000, 15, 292.	0.1	3
131	SiC/Si3N4 nano/micro-composite — processing, RT and HT mechanical properties. Journal of the European Ceramic Society, 2000, 20, 453-462.	2.8	82
132	Dynamic fatigue of a Si3N4+SiC nanocomposite at 1350°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 291, 250-255.	2.6	9
133	Silicon Nitride Based Nano- and Micro-Composites with Enhanced Mechanical Properties. Key Engineering Materials, 1999, 159-160, 405-410.	0.4	9
134	Fracture Toughness of a Silicon Nitride/Silicon Carbide Nanocomposite at 1350°C. Journal of the American Ceramic Society, 1999, 82, 3613-3615.	1.9	10
135	Microhardness Load Size Effect in Individual Grains of a Gas Pressure Sintered Silicon Nitride. Journal of the American Ceramic Society, 1998, 81, 3022-3024.	1.9	18
136	Bending creep behaviour of pressureless sintered MoSi2. Scripta Materialia, 1997, 37, 471-476.	2.6	9
137	Hardness anisotropy in bimodal grained gas pressure sintered Si3N4. Journal of Materials Science Letters, 1997, 16, 1664-1667.	0.5	20
138	Fractography, a Tool for the Failure Characterization of Engineering Ceramics. , 1997, , 371-387.		0
139	Structural development and properties of SiC-Si3N4 nano/microcomposites. Journal of Materials Science Letters, 1996, 15, 72-76.	0.5	13
140	Relationship between Microstructure, Toughening Mechanisms, and Fracture Toughness of Reinforced Silicon Nitride Ceramics. Journal of the American Ceramic Society, 1995, 78, 2619-2624.	1.9	158
141	Deformation and fracture behaviour of two Si3N4 ceramics with different sintering additives. Scripta Metallurgica Et Materialia, 1995, 32, 1459-1464.	1.0	1
142	Mechanical Properties of Some Si ₃ N ₄ Automotive Gas Turbine Rotor Ceramics. Key Engineering Materials, 1993, 89-91, 535-540.	0.4	1
143	Properties of Î ² -silicon nitride whiskers. Journal of Materials Science Letters, 1992, 11, 208-211.	0.5	12
144	Fracture characteristics of ceramic and cermet cutting tools. Ceramics International, 1987, 13, 133-137.	2.3	21

#	Article	IF	CITATIONS
145	Impression Creep in TBC and Advanced Ceramics Materials. Key Engineering Materials, 0, 333, 281-284.	0.4	0
146	The Influence of Corrosion in an Aqueous Solution of NaCl on Fracture and Strength of Various Structural Ceramics. Key Engineering Materials, 0, 409, 260-266.	0.4	1
147	Bending and Contact Strength of a Ceramic Nanocomposite. Key Engineering Materials, 0, 417-418, 761-764.	0.4	0
148	Strength Degradation Flaws in the Liquid-Phase-Sintered SiC Based Ceramics. Key Engineering Materials, 0, 409, 350-353.	0.4	1
149	Fracture Toughness of Si ₃ N ₄ Based Ceramics with Rare-Earth Oxide Sintering Additives. Key Engineering Materials, 0, 409, 377-381.	0.4	4
150	Wear Behavior of ZrO ₂ -CNF and Si ₃ N ₄ -CNT Nanocomposites. Key Engineering Materials, 0, 465, 495-498.	0.4	16
151	Microstructure, Fracture and Damage Mechanisms in Rare-Earth Doped Silicon Nitride Ceramics. Key Engineering Materials, 0, 465, 93-96.	0.4	1
152	Influence of Loading Conditions on the Deformation Behavior of Human Enamel Studied by Instrumented Indentation. Key Engineering Materials, 0, 586, 27-30.	0.4	0
153	Nanohardness of Individual Phases in WC – Co Cemented Carbides. Key Engineering Materials, 0, 586, 23-26.	0.4	6
154	Nanoindentation and AFM Studies on Tungsten Carbide Crystals in WC-Co Hardmetal. Key Engineering Materials, 0, 606, 107-110.	0.4	6