Lukas T Jeker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4004519/publications.pdf

Version: 2024-02-01

331670 526287 3,784 29 21 27 h-index citations g-index papers 32 32 32 5777 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunology, 2009, 10, 1000-1007.	14.5	1,251
2	Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. Journal of Experimental Medicine, 2008, 205, 1983-1991.	8. 5	482
3	Plasticity of CD4+ FoxP3+ T cells. Current Opinion in Immunology, 2009, 21, 281-285.	5. 5	287
4	Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. Journal of Experimental Medicine, 2011, 208, 383-394.	8.5	262
5	Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood, 2007, 109, 3803-3811.	1.4	185
6	The microRNA cluster miR-17 $\hat{a}^{1}/492$ promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nature Immunology, 2013, 14, 840-848.	14.5	183
7	A Resource for the Conditional Ablation of microRNAs in the Mouse. Cell Reports, 2012, 1, 385-391.	6.4	163
8	Micro <scp>RNA</scp> regulation of Tâ€cell differentiation and function. Immunological Reviews, 2013, 253, 65-81.	6.0	127
9	MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a Network of Regulators of T Helper 2 Cell-Associated Cytokine Production. Immunity, 2016, 44, 821-832.	14.3	119
10	microRNA-17–92 Regulates IL-10 Production by Regulatory T Cells and Control of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 1594-1605.	0.8	104
11	MicroRNA 10a Marks Regulatory T Cells. PLoS ONE, 2012, 7, e36684.	2.5	94
12	Stabilized \hat{I}^2 -Catenin in Thymic Epithelial Cells Blocks Thymus Development and Function. Journal of Immunology, 2009, 182, 2997-3007.	0.8	72
13	miR-15/16 Restrain Memory T Cell Differentiation, Cell Cycle, and Survival. Cell Reports, 2019, 28, 2169-2181.e4.	6.4	65
14	TGF- \hat{l}^2 signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood, 2008, 112, 626-634.	1.4	60
15	Breakdown in Peripheral Tolerance in Type 1 Diabetes in Mice and Humans. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007807-a007807.	6.2	59
16	Extralymphatic virus sanctuaries as a consequence of potent T-cell activation. Nature Medicine, 2007, 13, 1316-1323.	30.7	54
17	Mouse Thyroid Primary Culture. Biochemical and Biophysical Research Communications, 1999, 257, 511-515.	2.1	40
18	Canonical micro <scp>RNA</scp> s in thymic epithelial cells promote central tolerance. European Journal of Immunology, 2014, 44, 1313-1319.	2.9	37

#	Article	IF	CITATIONS
19	Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. Journal of Immunology, 2018, 200, 2489-2501.	0.8	28
20	Small RNA Regulators of T Cell-Mediated Autoimmunity. Journal of Clinical Immunology, 2010, 30, 347-357.	3.8	25
21	DGCR8-Mediated Production of Canonical Micrornas Is Critical for Regulatory T Cell Function and Stability. PLoS ONE, 2013, 8, e66282.	2.5	22
22	Maintenance of a normal thymic microenvironment and T-cell homeostasis require Smad4-mediated signaling in thymic epithelial cells. Blood, 2008, 112, 3688-3695.	1.4	16
23	A subpopulation of CD103 ^{pos} ICOS ^{pos} Treg cells occurs at high frequency in lymphopenic mice and represents a lymph node specific differentiation stage. European Journal of Immunology, 2015, 45, 1760-1771.	2.9	13
24	Identification of MiR-205 As a MicroRNA That Is Highly Expressed in Medullary Thymic Epithelial Cells. PLoS ONE, 2015, 10, e0135440.	2.5	13
25	Targeting microRNAs for immunomodulation. Current Opinion in Pharmacology, 2015, 23, 25-31.	3.5	13
26	CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunology Letters, 2022, 245, 18-28.	2.5	5
27	Plasmid- or Ribonucleoprotein-Mediated CRISPR/Cas Gene Editing in Primary Murine T Cells. Methods in Molecular Biology, 2021, 2285, 255-264.	0.9	3
28	Sphingosine-1-phosphate Receptor-1 Agonist Averts the De Novo Generation of Autoreactive T-cells in Murine Acute Graft-versus-Host Disease. HemaSphere, 2021, 5, e613.	2.7	0
29	miR-15/16 Restrain Memory T Cell Differentiation, Cell Cycle, and Survival. SSRN Electronic Journal, 0, , .	0.4	O