Cyril Muehlethaler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4004407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperspectral Raman imaging and multivariate statistical analysis for the reconstruction of obliterated serial numbers in polymers. Journal of Raman Spectroscopy, 2022, 53, 1415-1427.	2.5	3
2	Collecting data on textiles from the internet using web crawling and web scraping tools. Forensic Science International, 2021, 322, 110753.	2.2	10
3	Twoâ€stage approach for the inference of the source ofÂhighâ€dimensional and complex chemical data inÂforensicÂscience. Journal of Chemometrics, 2021, 35, .	1.3	2
4	Distribution of aerosol paint droplets in open- and closed-space environments: Towards activity level evaluation. Forensic Science International, 2020, 306, 110065.	2.2	3
5	Criteria for comparing infrared spectra – A review of the forensic and analytical chemistry literature. Forensic Chemistry, 2020, 18, 100224.	2.8	17
6	An analysis of tetrahydrocannabinol (THC) and its analogs using surface enhanced Raman Scattering (SERS). Chemical Physics, 2020, 536, 110812.	1.9	17
7	Differential shedding: A study of the fiber transfer mechanisms of blended cotton and polyester textiles. Forensic Science International, 2020, 308, 110181.	2.2	16
8	Le transfert différentiel des fibres de coton et de polyester lors d'agressions au couteau. Journal of the Canadian Society of Forensic Science, 2020, 53, 109-129.	0.9	1
9	Optimizing the analysis of dyes by Surface-Enhanced Raman Spectroscopy (SERS) using a conventional-microwave silver nanoparticles synthesis. Forensic Chemistry, 2019, 16, 100186.	2.8	22
10	Batch-to-batch variation in domestic paints: Insights into the newly commercialized recycled paints. Forensic Science International, 2019, 303, 109946.	2.2	4
11	Latent Fingermark Imaging by Single-Metal Deposition of Gold Nanoparticles and Surface Enhanced Raman Spectroscopy. Frontiers in Chemistry, 2019, 7, 440.	3.6	9
12	A random object-oriented population study of household paints measured by infrared spectroscopy. Forensic Science International, 2019, 297, 72-80.	2.2	10
13	Competitive Binding Investigations and Quantitation in Surface-Enhanced Raman Spectra of Binary Dye Mixtures. Applied Spectroscopy, 2018, 72, 60-68.	2.2	8
14	Contribution of Raman and Surface Enhanced Raman Spectroscopy (SERS) to the analysis of vehicle headlights: Dye(s) characterization. Forensic Science International, 2018, 287, 98-107.	2.2	5
15	Enhanced Raman spectra of black dye N719 on GaN nanowires. Applied Surface Science, 2018, 457, 809-814.	6.1	11
16	Sample selfâ€absorption in surfaceâ€enhanced <scp>Raman</scp> spectroscopy (SERS): influence of the resonance, dilution and depth of the measurements. Journal of Raman Spectroscopy, 2017, 48, 647-652.	2.5	9
17	Raman and SERS characterization of solvent dyes: An example of shoe polish analysis. Dyes and Pigments, 2017, 137, 539-552.	3.7	19
18	Combining spectroscopic data in the forensic analysis of paint: Application of a multiblock technique as chemometric tool. Forensic Science International, 2016, 263, 39-47.	2.2	21

CYRIL MUEHLETHALER

#	Article	IF	CITATIONS
19	Towards a validation of surface-enhanced Raman scattering (SERS) for use in forensic science: repeatability and reproducibility experiments. Forensic Science International, 2016, 268, 1-13.	2.2	49
20	Ultrahigh Raman Enhancement on Monolayer MoS ₂ . ACS Photonics, 2016, 3, 1164-1169.	6.6	167
21	Review of Surface Enhanced Raman Scattering Applications in Forensic Science. Analytical Chemistry, 2016, 88, 152-169.	6.5	248
22	Forensic aspects of the weathering and ageing of spray paints. Forensic Science International, 2016, 258, 32-40.	2.2	19
23	Evaluation of infrared spectra analyses using a likelihood ratio approach: A practical example of spray paint examination. Science and Justice - Journal of the Forensic Science Society, 2016, 56, 61-72.	2.1	8
24	Evaluation and Examination of a Possible Shoe-polish Trace in a Hold-up Case. Journal of Forensic Science and Medicine, 2016, 2, 233.	0.2	1
25	The detection of copper resinate pigment in works of art: contribution from Raman spectroscopy. Journal of Raman Spectroscopy, 2014, 45, 1186-1196.	2.5	31
26	Raman analysis of multilayer automotive paints in forensic science: measurement variability and depth profile. Journal of Raman Spectroscopy, 2014, 45, 1285-1292.	2.5	25
27	Influence of the shaking time on the forensic analysis of FTIR and Raman spectra of spray paints. Forensic Science International, 2014, 237, 78-85.	2.2	18
28	Discrimination and classification of FTIR spectra of red, blue and green spray paints using a multivariate statistical approach. Forensic Science International, 2014, 244, 170-178.	2.2	32
29	Survey on batch-to-batch variation in spray paints: A collaborative study. Forensic Science International, 2013, 229, 80-91.	2.2	17
30	The application of chemometrics on Infrared and Raman spectra as a tool for the forensic analysis of paints. Forensic Science International, 2011, 209, 173-182.	2.2	103