


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003989/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Progressive shear band propagation in metallic glasses under compression. Acta Materialia, 2015, 91, 19-33.                                                                                                              | 3.8 | 125       |
| 2  | Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012,<br>534, 365-373. | 2.6 | 83        |
| 3  | A universal fracture criterion for high-strength materials. Scientific Reports, 2013, 3, .                                                                                                                               | 1.6 | 83        |
| 4  | Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Materials, 2015, 7, e229-e229.                                                                                                                   | 3.8 | 82        |
| 5  | Notch Effect of Materials: Strengthening or Weakening?. Journal of Materials Science and Technology, 2014, 30, 599-608.                                                                                                  | 5.6 | 81        |
| 6  | Plastic deformability of metallic glass by artificial macroscopic notches. Acta Materialia, 2010, 58, 5420-5432.                                                                                                         | 3.8 | 74        |
| 7  | Metallic glasses: Notch-insensitive materials. Scripta Materialia, 2012, 66, 733-736.                                                                                                                                    | 2.6 | 73        |
| 8  | Tensile fracture criterion of metallic glass. Journal of Applied Physics, 2011, 109, .                                                                                                                                   | 1.1 | 65        |
| 9  | Design of ductile bulk metallic glasses by adding "soft―atoms. Applied Physics Letters, 2012, 100, .                                                                                                                     | 1.5 | 60        |
| 10 | On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nature Communications, 2022, 13, .                                                                        | 5.8 | 58        |
| 11 | Tensile fracture morphologies of bulk metallic glass. Journal of Applied Physics, 2010, 108, .                                                                                                                           | 1.1 | 53        |
| 12 | Microstructural percolation assisted breakthrough of trade-off between strength and ductility in CuZr-based metallic glass composites. Scientific Reports, 2014, 4, 4167.                                                | 1.6 | 52        |
| 13 | Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment.<br>Scripta Materialia, 2013, 68, 845-848.                                                                               | 2.6 | 51        |
| 14 | Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy. Journal of<br>Materials Science and Technology, 2022, 123, 70-77.                                                                        | 5.6 | 48        |
| 15 | Crack propagation mechanisms of AISI 4340 steels with different strength and toughness. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018,<br>729, 130-140.    | 2.6 | 44        |
| 16 | Compressive fracture morphology and mechanism of metallic glass. Journal of Applied Physics, 2013, 114, .                                                                                                                | 1.1 | 41        |
| 17 | Mechanical behavior of Al-based matrix composites reinforced with Mg58Cu28.5Gd11Ag2.5 metallic glasses. Advanced Powder Technology, 2014, 25, 635-639.                                                                   | 2.0 | 41        |
| 18 | Yield strength and yield strain of metallic glasses and their correlations with glass transition temperature. Journal of Alloys and Compounds, 2015, 637, 44-54.                                                         | 2.8 | 40        |

R T Qu

| #  | Article                                                                                                                                                                                                              | IF              | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 19 | Revealing the shear band cracking mechanism in metallic glass by X-ray tomography. Scripta Materialia, 2017, 133, 24-28.                                                                                             | 2.6             | 40            |
| 20 | Intrinsic impact toughness of relatively high strength alloys. Acta Materialia, 2018, 142, 226-235.                                                                                                                  | 3.8             | 35            |
| 21 | Generalized energy failure criterion. Scientific Reports, 2016, 6, 23359.                                                                                                                                            | 1.6             | 34            |
| 22 | Direct observations on the evolution of shear bands into cracks in metallic glass. Journal of<br>Materials Research, 2009, 24, 3130-3135.                                                                            | 1.2             | 32            |
| 23 | Fracture mechanism of some brittle metallic glasses. Journal of Applied Physics, 2009, 105, 103519.                                                                                                                  | 1.1             | 32            |
| 24 | Shear band-mediated fatigue cracking mechanism of metallic glass at high stress level. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015,<br>627, 336-339. | 2.6             | 32            |
| 25 | Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell. Materials Science and Engineering C, 2016, 59, 828-837.                                          | 3.8             | 31            |
| 26 | Shear band propagation and plastic softening of metallic glass under cyclic compression. Journal of Alloys and Compounds, 2017, 695, 2016-2022.                                                                      | 2.8             | 29            |
| 27 | Additive manufacturing of a martensitic Co–Cr–Mo alloy: Towards circumventing the strength–ductility trade-off. Additive Manufacturing, 2021, 37, 101725.                                                            | 1.7             | 27            |
| 28 | Relation Between Strength and Hardness of High-Entropy Alloys. Acta Metallurgica Sinica (English) Tj ETQqO 0 0                                                                                                       | rgBT/Ove<br>1.5 | rlock 10 Tf 5 |
| 29 | Deformation behavior and enhanced plasticity of Ti-based metallic glasses with notches.<br>Philosophical Magazine, 2010, 90, 3867-3877.                                                                              | 0.7             | 24            |
| 30 | Size-dependent failure of the strongest bulk metallic glass. Acta Materialia, 2019, 178, 249-262.                                                                                                                    | 3.8             | 24            |
| 31 | On the fracture mechanisms of nacre: Effects of structural orientation. Journal of Biomechanics, 2019, 96, 109336.                                                                                                   | 0.9             | 22            |
| 32 | Evolution of shear-band cracking in metallic glass under cyclic compression. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 267-272.              | 2.6             | 21            |
| 33 | Gradual shear band cracking and apparent softening of metallic glass under low temperature compression. Intermetallics, 2017, 87, 45-54.                                                                             | 1.8             | 20            |
| 34 | Roomâ€Temperature Mechanical Properties of<br>V <sub>20</sub> Nb <sub>20</sub> Mo <sub>20</sub> Ta <sub>20</sub> W <sub>20</sub> Highâ€Entropy<br>Alloy. Advanced Engineering Materials, 2018, 20, 1800028.          | 1.6             | 20            |
| 35 | Shear band fracture in metallic glass: Sample size effect. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2019, 739, 377-382.                                | 2.6             | 20            |
|    |                                                                                                                                                                                                                      |                 |               |

<sup>36</sup>Elasticity dominates strength and failure in metallic glasses. Journal of Applied Physics, 2015, 117, .1.119

R T Qu

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Shear band fracture in metallic glass: Hot or cold?. Scripta Materialia, 2019, 162, 136-140.                                                                                                              | 2.6 | 19        |
| 38 | Flaw-insensitive fracture of a micrometer-sized brittle metallic glass. Acta Materialia, 2021, 218, 117219.                                                                                               | 3.8 | 17        |
| 39 | In situ observation of bending stress–deflection response of metallic glass. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 155-161.   | 2.6 | 16        |
| 40 | Fatigue damage and fracture behavior of metallic glass under cyclic compression. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 41-47. | 2.6 | 16        |
| 41 | Improving fatigue property of metallic glass by tailoring the microstructure to suppress shear band formation. Materialia, 2019, 7, 100407.                                                               | 1.3 | 15        |
| 42 | Precisely predicting and designing the elasticity of metallic glasses. Journal of Applied Physics, 2014, 115, .                                                                                           | 1.1 | 13        |
| 43 | Stepwise work hardening induced by individual grain boundary in Cu bicrystal micropillars. Scientific Reports, 2015, 5, 15631.                                                                            | 1.6 | 13        |
| 44 | Designing metallic glasses with optimal combinations of glass-forming ability and mechanical properties. Journal of Materials Science and Technology, 2021, 67, 254-264.                                  | 5.6 | 13        |
| 45 | The Minimum Energy Density Criterion for the Competition between Shear and Flat Fracture. Advanced Engineering Materials, 2018, 20, 1800150.                                                              | 1.6 | 11        |
| 46 | Compression-compression fatigue behavior of a Zr-based metallic glass with different free volume contents. Journal of Alloys and Compounds, 2019, 810, 151924.                                            | 2.8 | 10        |
| 47 | Notch fatigue behavior: Metallic glass versus ultra-high strength steel. Scientific Reports, 2016, 6,<br>35557.                                                                                           | 1.6 | 9         |
| 48 | Shear banding stability and fracture of metallic glass: Effect of external confinement. Journal of the Mechanics and Physics of Solids, 2020, 138, 103922.                                                | 2.3 | 9         |
| 49 | Shear band evolution during large plastic deformation of brittle and ductile metallic glasses.<br>Philosophical Magazine Letters, 2010, 90, 573-579.                                                      | 0.5 | 8         |
| 50 | Enhanced plastic deformation in a metallic glass induced by notches. Philosophical Magazine Letters, 2010, 90, 875-882.                                                                                   | 0.5 | 7         |
| 51 | Compression behavior of inter-particle regions in high-strength Al84Ni7Gd6Co3 alloy. Materials<br>Letters, 2016, 185, 25-28.                                                                              | 1.3 | 7         |
| 52 | A new method to estimate the plane strain fracture toughness of materials. Fatigue and Fracture of<br>Engineering Materials and Structures, 2019, 42, 415-424.                                            | 1.7 | 7         |
| 53 | Failure surfaces of high-strength materials predicted by a universal failure criterion. International<br>Journal of Fracture, 2018, 211, 237-252.                                                         | 1.1 | 5         |
| 54 | Anisotropy of tensile strength and fracture mode of perfect face-centered-cubic crystals. Journal of<br>Applied Physics, 2015, 117, .                                                                     | 1.1 | 4         |

R T Qu

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Shear banding and fracture behaviors of a bulk metallic glass studied via in-situ bending experiments<br>with notched and un-notched specimens. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2020, 798, 140005. | 2.6 | 4         |
| 56 | Shear Band Evolution under Cyclic Loading and Fatigue Property in Metallic Glasses: A Brief Review.<br>Materials, 2021, 14, 3595.                                                                                                                                         | 1.3 | 4         |
| 57 | Locating the optimal microstructural state against dynamic perforation by evaluating the strain-rate dependences of strength and hardness. International Journal of Impact Engineering, 2021, 152, 103856.                                                                | 2.4 | 4         |
| 58 | Macroscopic Bifurcation and Fracture Mechanism of Polymethyl Methacrylate. Advanced Engineering<br>Materials, 2015, 17, 1454-1464.                                                                                                                                        | 1.6 | 3         |
| 59 | A new idea of modeling shear band in metallic glass based on the concept of distributed dislocation.<br>Journal of Non-Crystalline Solids, 2022, 577, 121328.                                                                                                             | 1.5 | 3         |
| 60 | Fracture and strength of a TiZr-based metallic glass at low temperatures. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 768, 138453.                                                                       | 2.6 | 2         |
| 61 | Deformation map of metallic glass: Normal stress effect. Science China Materials, 2020, 63, 2620-2626.                                                                                                                                                                    | 3.5 | 2         |
| 62 | Intrinsic Strength Asymmetry Between Tension and Compression of Perfect Face-Centered-Cubic<br>Crystals. Acta Metallurgica Sinica (English Letters), 2016, 29, 755-762.                                                                                                   | 1.5 | 1         |
| 63 | Understanding the tensile fracture of deeply-notched metallic glasses. International Journal of Solids and Structures, 2020, 207, 70-81.                                                                                                                                  | 1.3 | 1         |
| 64 | Size-Dependent Failure of the Strongest Bulk Metallic Glass. SSRN Electronic Journal, 0, , .                                                                                                                                                                              | 0.4 | 0         |
| 65 | Deformation Map of Metallic Glasses: Mean Stress Effect. SSRN Electronic Journal, 0, , .                                                                                                                                                                                  | 0.4 | Ο         |