Carolyn M Klinge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey. Environmental Health Perspectives, 2022, 130, 17003.	2.8	12
2	Multiomics analysis of the impact of polychlorinated biphenyls on environmental liver disease in a mouse model. Environmental Toxicology and Pharmacology, 2022, 94, 103928.	2.0	7
3	Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated IncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers, 2021, 13, 3530.	1.7	16
4	Abstract 1402: HNRNPA2B1 increases the serine synthesis pathway in endocrine-resistant breast cancer cells. , 2021, , .		0
5	HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Letters, 2021, 518, 152-168.	3.2	28
6	Serine synthesis influences tamoxifen response in ER+ human breast carcinoma. Endocrine-Related Cancer, 2021, 28, 27-37.	1.6	9
7	Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. Environmental Epigenetics, 2021, 7, dvab008.	0.9	1
8	Tender coconut water suppresses hepatic inflammation by activating AKT and JNK signaling pathways in an in vitro model of sepsis. Journal of Functional Foods, 2020, 64, 103637.	1.6	15
9	Epidemics will always come (and go): The need to prepare for the next one, research on COVID-19, and the role of molecular and cellular endocrinology. Molecular and Cellular Endocrinology, 2020, 511, 110863.	1.6	3
10	Regulation of breast cancer metastasis signaling by miRNAs. Cancer and Metastasis Reviews, 2020, 39, 837-886.	2.7	87
11	Estrogenic control of mitochondrial function. Redox Biology, 2020, 31, 101435.	3.9	125
12	HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Scientific Reports, 2019, 9, 9430.	1.6	78
13	Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease. Food and Chemical Toxicology, 2019, 129, 64-76.	1.8	25
14	Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocrine-Related Cancer, 2018, 25, R259-R282.	1.6	94
15	High N-Acetyltransferase 1 Expression is Associated with Estrogen Receptor Expression in Breast Tumors, but is not Under Direct Regulation by Estradiol, 5 <i>î±</i> -androstane-3 <i>î²</i> , 17 <i>î²</i> -Diol, or Dihydrotestosterone in Breast Cancer Cells. Journal of Pharmacology and Experimental Therapeutics. 2018. 365. 84-93.	1.3	16
16	Steroid Hormone Receptors and Signal Transduction Processes. Endocrinology, 2018, , 187-232.	0.1	8
17	Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer, 2018, 18, 421.	1.1	47
18	Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Non-coding RNA, 2018, 4, 40.	1.3	110

#	Article	IF	CITATIONS
19	Transcriptomic response of breast cancer cells to anacardic acid. Scientific Reports, 2018, 8, 8063.	1.6	32
20	Knockout of human arylamine <i>N</i> â€acetyltransferase 1 (NAT1) in MDAâ€MBâ€231 breast cancer cells leads to increased reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity. Molecular Carcinogenesis, 2018, 57, 1458-1466.	1.3	21
21	Mechanisms of Action of Dehydroepiandrosterone. Vitamins and Hormones, 2018, 108, 29-73.	0.7	32
22	Dehydroepiandrosterone Research: Past, Current, and Future. Vitamins and Hormones, 2018, 108, 1-28.	0.7	59
23	Identification of miRNAs as biomarkers for acquired endocrine resistance in breast cancer. Molecular and Cellular Endocrinology, 2017, 456, 76-86.	1.6	35
24	Regulation of miR-29b-1/a transcription and identification of target mRNAs in CHO-K1 cells. Molecular and Cellular Endocrinology, 2017, 444, 38-47.	1.6	8
25	Estrogens regulate life and death in mitochondria. Journal of Bioenergetics and Biomembranes, 2017, 49, 307-324.	1.0	90
26	Tamoxifen differentially regulates miR-29b-1 and miR-29a expression depending on endocrine-sensitivity in breast cancer cells. Cancer Letters, 2017, 388, 230-238.	3.2	39
27	The miR-29 transcriptome in endocrine-sensitive and resistant breast cancer cells. Scientific Reports, 2017, 7, 5205.	1.6	28
28	Regulation of Gene Expression by & amp;beta;-Glucans. American Journal of Immunology, 2017, 13, 1-10.	0.1	3
29	Genome-wide miRNA response to anacardic acid in breast cancer cells. PLoS ONE, 2017, 12, e0184471.	1.1	13
30	Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells. Journal of Cellular Biochemistry, 2016, 117, 2521-2532.	1.2	19
31	Arsenite and Cadmium Activate MAPK/ERK via Membrane Estrogen Receptors and C-Protein Coupled Estrogen Receptor Signaling in Human Lung Adenocarcinoma Cells. Toxicological Sciences, 2016, 152, 62-71.	1.4	55
32	Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells. Experimental Cell Research, 2016, 347, 222-231.	1.2	30
33	Novel mechanisms for DHEA action. Journal of Molecular Endocrinology, 2016, 56, R139-R155.	1.1	126
34	Part III: Steroid Hormone Receptors and Signal Transduction Processes. Endocrinology, 2016, , 1-47.	0.1	2
35	Estrogen action: Receptors, transcripts, cell signaling, and non-coding RNAs in normal physiology and disease. Molecular and Cellular Endocrinology, 2015, 418, 191-192.	1.6	21
36	miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Molecular and Cellular Endocrinology, 2015, 418, 273-297.	1.6	96

#	Article	IF	CITATIONS
37	Roles for miRNAs in endocrine resistance in breast cancer. Endocrine-Related Cancer, 2015, 22, R279-R300.	1.6	63
38	A Conceptual Framework for Mentoring in a Learning Organization. Adult Learning, 2015, 26, 160-166.	0.6	44
39	Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. Journal of Biological Chemistry, 2015, 290, 15799-15811.	1.6	47
40	Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen. Biochemical Journal, 2015, 465, 49-61.	1.7	46
41	Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis. Oncotarget, 2015, 6, 12248-12263.	0.8	35
42	COUP-TFII inhibits NFkappaB activation in endocrine-resistant breast cancer cells. Molecular and Cellular Endocrinology, 2014, 382, 358-367.	1.6	20
43	5-Aza-2-deoxycytidine and trichostatin A increase COUP-TFII expression in antiestrogen-resistant breast cancer cell lines. Cancer Letters, 2014, 347, 139-150.	3.2	12
44	Dehydroepiandrosterone-induces miR-21 transcription in HepG2 cells through estrogen receptor Î ² and androgen receptor. Molecular and Cellular Endocrinology, 2014, 392, 23-36.	1.6	27
45	Effect of nonpersistent pesticides on estrogen receptor, androgen receptor, and aryl hydrocarbon receptor. Environmental Toxicology, 2014, 29, 1201-1216.	2.1	56
46	β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression. International Journal of Oncology, 2014, 44, 1365-1375.	1.4	17
47	DHEA metabolites activate estrogen receptors alpha and beta. Steroids, 2013, 78, 15-25.	0.8	63
48	Estradiol and tamoxifen regulate NRF-1 and mitochondrial function in mouse mammary gland and uterus. Journal of Molecular Endocrinology, 2013, 51, 233-246.	1.1	27
49	Endocrine Disruptors Fludioxonil and Fenhexamid Stimulate miR-21 Expression in Breast Cancer Cells. Toxicological Sciences, 2013, 131, 71-83.	1.4	44
50	Reduced Expression of miR-200 Family Members Contributes to Antiestrogen Resistance in LY2 Human Breast Cancer Cells. PLoS ONE, 2013, 8, e62334.	1.1	85
51	The Role of Arylamine Nâ€acetyltransferase 1 in Breast Cancer Progression. FASEB Journal, 2013, 27, lb579.	0.2	Ο
52	Novel and Alternative Bioinformatics Approaches to Understand miRNA-mRNA Interactome in Cancer Research. , 2012, , 267-288.		0
53	Inhibition of non-small-cell lung cancer growth by combined fulvestrant and vandetanib. Future Oncology, 2012, 8, 529-533.	1.1	6
54	Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. International Journal of Oncology, 2012, 40, 1619-26.	1.4	28

#	Article	IF	CITATIONS
55	Multiple roles of COUP-TFII in cancer initiation and progression. Journal of Molecular Endocrinology, 2012, 49, R135-R148.	1.1	36
56	17β-Estradiol attenuates cytokine-induced nitric oxide production in rat hepatocyte. Journal of Trauma and Acute Care Surgery, 2012, 73, 408-412.	1.1	12
57	miRNAs and estrogen action. Trends in Endocrinology and Metabolism, 2012, 23, 223-233.	3.1	177
58	Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer. BMC Cancer, 2012, 12, 624.	1.1	72
59	Identification and Characterization of Nucleolin as a COUP-TFII Coactivator of Retinoic Acid Receptor β Transcription in Breast Cancer Cells. PLoS ONE, 2012, 7, e38278.	1.1	37
60	Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells. Archives of Toxicology, 2012, 86, 633-642.	1.9	9
61	The endocrine disruptors cadmium chloride and sodium arsenate induce human lung adenocarcinoma cell proliferation by activating the estrogen receptorâ€mediated signaling pathway. FASEB Journal, 2012, 26, 765.3.	0.2	1
62	Biomimetic Hydrogels with VEGF Induce Angiogenic Processes in Both hUVEC and hMEC. Biomacromolecules, 2011, 12, 242-246.	2.6	20
63	Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Letters, 2011, 313, 26-43.	3.2	68
64	MUC1/A and MUC1/B splice variants differentially regulate inflammatory cytokine expression. Experimental Eye Research, 2011, 93, 649-657.	1.2	17
65	Ligand-dependent differences in estrogen receptor beta-interacting proteins identified in lung adenocarcinoma cells corresponds to estrogenic responses. Proteome Science, 2011, 9, 60.	0.7	10
66	Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor β and APâ€l recruitment to adjacent promoter binding sites. FASEB Journal, 2011, 25, 1402-1416.	0.2	26
67	Targeting the Intracellular MUC1 C-terminal Domain Inhibits Proliferation and Estrogen Receptor Transcriptional Activity in Lung Adenocarcinoma Cells. Molecular Cancer Therapeutics, 2011, 10, 2062-2071.	1.9	24
68	STARD5 expression and chemoresistance in lung adenocarcinoma cells. FASEB Journal, 2011, 25, 915.4.	0.2	0
69	Estradiol-induced proliferation of papillary and follicular thyroid cancer cells is mediated by estrogen receptors \hat{I}_{\pm} and \hat{I}^2 . International Journal of Oncology, 2010, 36, 1067-80.	1.4	65
70	Sex Differences in Estrogen Receptor Subcellular Location and Activity in Lung Adenocarcinoma Cells. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 320-330.	1.4	52
71	Estrogen receptor alpha 46 is reduced in tamoxifen resistant breast cancer cells and re-expression inhibits cell proliferation and estrogen receptor alpha 66-regulated target gene transcription. Molecular and Cellular Endocrinology, 2010, 323, 268-276.	1.6	69
72	Anacardic Acid Inhibits Estrogen Receptor α–DNA Binding and Reduces Target Gene Transcription and Breast Cancer Cell Proliferation. Molecular Cancer Therapeutics, 2010, 9, 594-605.	1.9	46

5

#	Article	IF	CITATIONS
73	The Role of MUC1 Splice Variants in Cellular Inflammation. FASEB Journal, 2010, 24, 753.8.	0.2	0
74	Activity and intracellular location of estrogen receptors α and β in human bronchial epithelial cells. Molecular and Cellular Endocrinology, 2009, 305, 12-21.	1.6	53
75	Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Research, 2009, 37, 2584-2595.	6.5	333
76	Repression of Activated Aryl Hydrocarbon Receptor–Induced Transcriptional Activation by 5α-Dihydrotestosterone in Human Prostate Cancer LNCaP and Human Breast Cancer T47D Cells. Journal of Pharmacological Sciences, 2009, 109, 380-387.	1.1	34
77	Estrogen Regulation of MicroRNA Expression. Current Genomics, 2009, 10, 169-183.	0.7	131
78	Estrogenic control of mitochondrial function and biogenesis. Journal of Cellular Biochemistry, 2008, 105, 1342-1351.	1.2	266
79	MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 2008, 27, 4373-4379.	2.6	648
80	Resveratrol stimulates nitric oxide production by increasing estrogen receptor αaâ€Srcâ€caveolinâ€1 interaction and phosphorylation in human umbilical vein endothelial cells. FASEB Journal, 2008, 22, 2185-2197.	0.2	151
81	Estradiol Stimulates Transcription of Nuclear Respiratory Factor-1 and Increases Mitochondrial Biogenesis. Molecular Endocrinology, 2008, 22, 609-622.	3.7	211
82	Carbon Nanotube Meshes for Separating Proteins Electrophoretically. , 2008, , .		0
83	Estradiol and dihydrotestosterone regulate endothelial cell barrier function after hypergravity-induced alterations in MAPK activity. American Journal of Physiology - Cell Physiology, 2007, 293, C566-C573.	2.1	29
84	Effects of estradiol and 4-hydroxytamoxifen on the conformation, thermal stability, and DNA recognition of estrogen receptor \hat{l}^2 . Biochemistry and Cell Biology, 2007, 85, 1-10.	0.9	7
85	Rapid effects of diesel exhaust particulate extracts on intracellular signaling in human endothelial cells. Toxicology Letters, 2007, 174, 61-73.	0.4	32
86	Estrogen receptor beta yield from baculovirus lytic infection is higher than from stably transformed Sf21 cells. Applied Microbiology and Biotechnology, 2007, 74, 1256-1263.	1.7	7
87	Cadmium chloride and sodium arsenate, environmental estrogens in cigarette smoke, activate estrogen signaling pathways to induce proliferation in a human lung adenocarcinoma cell line. FASEB Journal, 2007, 21, A255.	0.2	0
88	Effect of estradiol and dihydrotestosterone on hypergravity-induced MAPK signaling and occludin expression in human umbilical vein endothelial cells. Cell and Tissue Research, 2006, 324, 243-253.	1,5	23
89	Anacardic Acid Biosynthesis and Bioactivity. Recent Advances in Phytochemistry, 2006, 40, 131-156.	0.5	8
90	Decreased Chicken Ovalbumin Upstream Promoter Transcription Factor II Expression in Tamoxifen-Resistant Breast Cancer Cells. Cancer Research, 2006, 66, 10188-10198.	0.4	34

#	Article	IF	CITATIONS
91	Gender difference in the activity but not expression of estrogen receptors \hat{I}_{\pm} and \hat{I}^2 in human lung adenocarcinoma cells. Endocrine-Related Cancer, 2006, 13, 113-134.	1.6	85
92	Regulation of COUPâ€TFII expression in Tamoxifen―sensitive and resistant breast cancer cells FASEB Journal, 2006, 20, A968.	0.2	0
93	Genderâ€specific differences in the expression and activity of estrogen receptors alpha and beta in lung adenocarcinoma cells. FASEB Journal, 2006, 20, A968.	0.2	0
94	Resveratrol and Estradiol Rapidly Activate MAPK Signaling through Estrogen Receptors \hat{I}_\pm and \hat{I}^2 in Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 7460-7468.	1.6	268
95	Estrogen Receptor β Isoforms Exhibit Differences in Ligand-Activated Transcriptional Activity in an Estrogen Response Element Sequence-Dependent Manner. Endocrinology, 2004, 145, 149-160.	1.4	46
96	VARIATION IN THE ANTIANDROGENIC ACTIVITY OF DIESEL EXHAUST PARTICULATES EMITTED UNDER DIFFERENT ENGINE LOADS. Polycyclic Aromatic Compounds, 2004, 24, 743-757.	1.4	9
97	Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors $\hat{I}\pm$ and \hat{I}^2 by coactivators and corepressors. Journal of Molecular Endocrinology, 2004, 33, 387-410.	1.1	173
98	Antiandrogenic activity of extracts of diesel exhaust particles emitted from diesel-engine truck under different engine loads and speeds. Toxicology, 2004, 195, 243-254.	2.0	40
99	A New Luciferase Reporter Gene Assay for the Detection of Androgenic and Antiandrogenic Effects Based on a Human Prostate Specific Antigen Promoter and PC3/AR Human Prostate Cancer Cells. Analytical Sciences, 2004, 20, 55-59.	0.8	13
100	Transcription profiling of estrogen target genes in young and old mouse uterus. Experimental Gerontology, 2003, 38, 1087-1099.	1.2	12
101	Estrogenic Activity in White and Red Wine Extracts. Journal of Agricultural and Food Chemistry, 2003, 51, 1850-1857.	2.4	79
102	Identification of estrogen receptor beta expression in Chinese hamster ovary (CHO) cells and comparison of estrogen-responsive gene transcription in cells adapted to serum-free media. Journal of Steroid Biochemistry and Molecular Biology, 2003, 86, 41-55.	1.2	13
103	Antiandrogenic Activities of Diesel Exhaust Particle Extracts in PC3/AR Human Prostate Carcinoma Cells. Toxicological Sciences, 2003, 76, 299-309.	1.4	48
104	Maximizing Production of Estrogen Receptor Î ² with the Baculovirus Expression System. BioTechniques, 2003, 34, 334-343.	0.8	6
105	Antiestrogenic Activity of Extracts of Diesel Exhaust Particulate Matter in MCF-7 Human Breast Carcinoma Cells. Polycyclic Aromatic Compounds, 2002, 22, 747-759.	1.4	13
106	The Agonist Activity of Tamoxifen Is Inhibited by the Short Heterodimer Partner Orphan Nuclear Receptor in Human Endometrial Cancer Cells. Endocrinology, 2002, 143, 853-867.	1.4	19
107	Response element sequence modulates estrogen receptor alpha and beta affinity and activity. Journal of Molecular Endocrinology, 2002, 29, 137-152.	1.1	46
108	Short Heterodimer Partner (SHP) Orphan Nuclear Receptor Inhibits the Transcriptional Activity of Aryl Hydrocarbon Receptor (AHR)/AHR Nuclear Translocator (ARNT). Archives of Biochemistry and Biophysics, 2001, 390, 64-70.	1.4	51

#	Article	IF	CITATIONS
109	Estrogen Receptors α and β Exhibit Different Estradiol and Estrogen Response Element Binding in the Presence of Nonspecific DNA. Archives of Biochemistry and Biophysics, 2001, 390, 253-264.	1.4	14
110	Estrogen response element sequence impacts the conformation and transcriptional activity of estrogen receptor α1Supported by NIH R01 DK 53220 and a University of Louisville School of Medicine Research Grant to C.M.K.1. Molecular and Cellular Endocrinology, 2001, 174, 151-166.	1.6	76
111	A mathematical approach to predict the affinity of estrogen receptors α and β binding to DNA. Molecular and Cellular Endocrinology, 2001, 182, 109-119.	1.6	21
112	Estrogen receptor interaction with estrogen response elements. Nucleic Acids Research, 2001, 29, 2905-2919.	6.5	870
113	Regulation of estrogenic and nuclear factor κB functions by polyamines and their role in polyamine analog-induced apoptosis of breast cancer cells. Oncogene, 2001, 20, 1715-1729.	2.6	42
114	Estrogen response element binding induces alterations in estrogen receptor-alpha conformation as revealed by susceptibility to partial proteolysis. Journal of Molecular Endocrinology, 2001, 27, 275-292.	1.1	10
115	Regulation of cell cycle and cyclins by 16alpha-hydroxyestrone in MCF-7 breast cancer cells. Journal of Molecular Endocrinology, 2001, 27, 293-307.	1.1	31
116	Resveratrol Acts as a Mixed Agonist/Antagonist for Estrogen Receptors α and β*. Endocrinology, 2000, 141, 3657-3667.	1.4	484
117	The Aryl Hydrocarbon Receptor Interacts with Estrogen Receptor Alpha and Orphan Receptors COUP-TFI and ERRα1. Archives of Biochemistry and Biophysics, 2000, 373, 163-174.	1.4	119
118	Interaction of Tetrahydrocrysene Ketone with Estrogen Receptors \hat{I}_{\pm} and \hat{I}^2 Indicates Conformational Differences in the Receptor Subtypes. Archives of Biochemistry and Biophysics, 2000, 381, 135-142.	1.4	22
119	Comparison of transcriptional synergy of estrogen receptors α and β from multiple tandem estrogen response elements. Molecular and Cellular Endocrinology, 2000, 165, 151-161.	1.6	38
120	Selectivity of antibodies to estrogen receptors α and β (ERα and ERβ) for detecting DNA-bound ERα and ERβ in vitro. Steroids, 2000, 65, 505-512.	0.8	15
121	Estrogen receptor interaction with co-activators and co-repressorsâ~†. Steroids, 2000, 65, 227-251.	0.8	413
122	Role of estrogen receptor ligand and estrogen response element sequence on interaction with chicken ovalbumin upstream promoter transcription factor (COUP-TF). Journal of Steroid Biochemistry and Molecular Biology, 1999, 71, 1-19.	1.2	39
123	Estrogen receptor binding to estrogen response elements slows ligand dissociation and synergistically activates reporter gene expression. Molecular and Cellular Endocrinology, 1999, 150, 99-111.	1.6	26
124	The aryl hydrocarbon receptor (AHR)/AHR nuclear translocator (ARNT) heterodimer interacts with naturally occurring estrogen response elements. Molecular and Cellular Endocrinology, 1999, 157, 105-119.	1.6	112
125	Comparison of tamoxifen ligands on estrogen receptor interaction with estrogen response elements. Molecular and Cellular Endocrinology, 1998, 143, 79-90.	1.6	26
126	Sequence Requirements for Estrogen Receptor Binding to Estrogen Response Elements. Journal of Biological Chemistry, 1998, 273, 29321-29330.	1.6	162

#	Article	IF	CITATIONS
127	Effects of Multiple Estrogen Responsive Elements, Their Spacing, and Location on Estrogen Response of Reporter Genes. Molecular Endocrinology, 1997, 11, 1994-2003.	3.7	63
128	Chicken Ovalbumin Upstream Promoter-Transcription Factor Interacts with Estrogen Receptor, Binds to Estrogen Response Elements and Half-Sites, and Inhibits Estrogen-induced Gene Expression. Journal of Biological Chemistry, 1997, 272, 31465-31474.	1.6	101
129	Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro. Nucleic Acids Research, 1997, 25, 1903-1912.	6.5	60
130	hsp70 is not required for high affinity binding of purified calf uterine estrogen receptor to estrogen response element DNA in Vitro. Journal of Steroid Biochemistry and Molecular Biology, 1997, 63, 283-301.	1.2	21
131	Footprint analysis of estrogen receptor binding to adjacent estrogen response elements. Journal of Steroid Biochemistry and Molecular Biology, 1996, 58, 45-61.	1.2	24
132	Stability of the ligand-estrogen receptor interaction depends on estrogen response element flanking sequences and cellular factors. Journal of Steroid Biochemistry and Molecular Biology, 1996, 59, 413-429.	1.2	35
133	Dissociation of 4-hydroxytamoxifen, but not estradiol or tamoxifen aziridine, from the estrogen receptor as the receptor binds estrogen response element DNA. Journal of Steroid Biochemistry and Molecular Biology, 1996, 57, 51-66.	1.2	27
134	Site-directed estrogen receptor antibodies stabilize 4-hydroxytamoxifen ligand, but not estradiol, and indicate ligand-specific differences in the recognition of estrogen response element DNA in vitro. Steroids, 1996, 61, 278-289.	0.8	20
135	Phosphorylation of Purified Estradiol-Liganded Estrogen Receptor by Casein Kinase II Increases Estrogen Response Element Binding but Does Not Alter Ligand Stability. Biochemical and Biophysical Research Communications, 1996, 223, 554-560.	1.0	27
136	A Test of the Hypothesis That a 60-Hz Magnetic Field Affects Ornithine Decarboxylase Activity in Mouse L929 Cells in vitro. Biochemical and Biophysical Research Communications, 1995, 214, 627-631.	1.0	17
137	Cooperative binding of estrogen receptor to DNA depends on spacing of binding sites, flanking sequence, and ligand. Biochemistry, 1995, 34, 2511-2520.	1.2	48
138	Polyamine-mediated conformational perturbations in DNA alter the binding of estrogen receptor to poly(dG-m5dC).poly(dG-m5dC) and a plasmid containing the estrogen response element. Journal of Steroid Biochemistry and Molecular Biology, 1995, 54, 89-99.	1.2	46
139	Tc-99m markierte ×stradiol-derivate synthese, organverteilung und tumor-affinitä Journal of Labelled Compounds and Radiopharmaceuticals, 1994, 34, 981-987.	0.5	39
140	Tc-99m und deuterium markierte gehirn-affine radiodiagnostika - vergleich von HMPAO mit cytectren-derivaten cyclischer amine. Journal of Labelled Compounds and Radiopharmaceuticals, 1993, 33, 1039-1051.	0.5	4
141	Differential impact of flanking sequences on estradiol- vs 4-hydroxytamoxifen-liganded estrogen receptor binding to estrogen responsive element DNA. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 713-730.	1.2	31
142	Antiestrogen-liganded estrogen receptor interaction with estrogen responsive element DNA in vitro. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 249-262.	1.2	28
143	Estrogen receptor alters the topology of plasmid DNA containing estrogen responsive elements. Biochemical and Biophysical Research Communications, 1991, 176, 486-491.	1.0	10
144	A Microtiter Well Assay for Quantitative Measurement of Estrogen Receptor Binding to Estrogen-Responsive Elements. Molecular Endocrinology, 1990, 4, 1027-1033.	3.7	22

#	Article	IF	CITATIONS
145	Nuclease sensitivity of estradiol-charged estrogen receptor binding sites in nuclei isolated from normal and neoplastic rat mammary tissues. The Journal of Steroid Biochemistry, 1990, 36, 7-14.	1.3	0
146	Rapid purification of the estrogen receptor by sequence-specific DNA affinity chromatography. Biochemistry, 1989, 28, 8671-8675.	1.2	31
147	Antiestrogen(4-hydroxytamoxifen)-charged estrogen receptor binding to nuclei from normal and neoplastic rat mammary tissues is not affected by host hormonal status. The Journal of Steroid Biochemistry, 1989, 33, 335-340.	1.3	5
148	An endogenous protein inhibitor of DNA polymerase α in normal and neoplastic rat mammary tissues. International Journal of Biochemistry & Cell Biology, 1987, 19, 461-466.	0.8	2
149	Intranuclear dynamics of DNA polymerase α differs between the transplanted R3230AC mammary adenocarcinomas and the host mammary gland depending on lactation cycle. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1986, 868, 24-29.	2.4	1
150	Inhibition of DNA polymerase α activity by proteins from rat liver. International Journal of Biochemistry & Cell Biology, 1985, 17, 347-353.	0.8	7
151	Antiestrogenic Activity of Extracts of Diesel Exhaust Particulate Matter in MCF-7 Human Breast Carcinoma Cells. , 0, .		7