David J Durgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003695/publications.pdf Version: 2024-02-01

ΠΑΥΙΟΙ ΠΗΡΟΑΝ

#	Article	IF	CITATIONS
1	Alterations of the gut microbial community structure and function with aging in the spontaneously hypertensive stroke prone rat. Scientific Reports, 2022, 12, .	1.6	6
2	The gut microbiome contributes to bloodâ€brain barrier disruption in spontaneously hypertensive stroke prone rats. FASEB Journal, 2021, 35, e21201.	0.2	24
3	Restructuring the Gut Microbiota by Intermittent Fasting Lowers Blood Pressure. Circulation Research, 2021, 128, 1240-1254.	2.0	45
4	Reduced Bile Acid Signaling Contributes to Hypertension Development in Spontaneously Hypertensive Strokeâ€Prone Rats. FASEB Journal, 2021, 35, .	0.2	0
5	Examining the role of extacellular vesicles in blood pressure regulation. FASEB Journal, 2021, 35, .	0.2	Ο
6	Restructuring the Gut Microbiota by Intermittent Fasting Lowers Blood Pressure. FASEB Journal, 2021, 35, .	0.2	0
7	Gut microbiota - a key regulator of aging-associated atrial fibrillation?. Cardiovascular Research, 2021, , .	1.8	2
8	Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance. Gut Microbes, 2020, 12, 1814107.	4.3	72
9	Gut Microbiota–Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circulation Research, 2020, 127, 453-465.	2.0	263
10	Age-dependent involvement of gut mast cells and histamine in post-stroke inflammation. Journal of Neuroinflammation, 2020, 17, 160.	3.1	38
11	Effects of the Gut Microbiome on Agedâ€Related Cognitive Decline and Inflammation. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
12	Abstract 13: Cholic Acid Supplementation Attenuates Hypertension In Spontaneously Hypertensive Stroke Prone Rats. Hypertension, 2020, 76, .	1.3	0
13	Abstract P088: The Gut Microbiome Contributes To The Cerebral Small Vessel Disease Phenotype In Spontaneously Hypertensive Stroke Prone Rats. Hypertension, 2020, 76, .	1.3	1
14	Abstract P241: Intermittent Fasting Lowers Blood Pressure In A Rat Model Of Hypertension By Modulating The Gut Microbiota. Hypertension, 2020, 76, .	1.3	0
15	Evidence for a gutâ€immuneâ€vascular axis in the development of hypertension. Acta Physiologica, 2019, 227, e13338.	1.8	2
16	Examining the Role of the Microbiota-Gut-Brain Axis in Stroke. Stroke, 2019, 50, 2270-2277.	1.0	97
17	Twik-2 ^{â^'/â^'} mouse demonstrates pulmonary vascular heterogeneity in intracellular pathways for vasocontractility. Physiological Reports, 2019, 7, e13950.	0.7	7
18	Spontaneously Hypertensive Rats is Susceptible to Bacteria Translocation from Gut to Peripheral Tissues. FASEB Journal, 2019, 33, 709.1.	0.2	0

DAVID J DURGAN

#	Article	IF	CITATIONS
19	Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea. Hypertension, 2018, 72, 1141-1150.	1.3	120
20	Ageâ€related changes in the gut microbiota influence systemic inflammation and stroke outcome. Annals of Neurology, 2018, 84, 23-36.	2.8	293
21	Abstract TMP25: Short Chain Fatty Acids Mediate the Beneficial Effects of Young Microbiome on Recovery in Aged Mice after Ischemic Stroke. Stroke, 2018, 49, .	1.0	1
22	Abstract TMP95: A Role for Gut Dysbiosis in the Progression of Cerebral Small Vessel Disease. Stroke, 2018, 49, .	1.0	0
23	Gut dysbiosis in the development of cerebral small vessel disease. FASEB Journal, 2018, 32, 582.4.	0.2	0
24	Alterations in the gut microbiota can elicit hypertension in rats. Physiological Genomics, 2017, 49, 96-104.	1.0	293
25	The rat cerebral vasculature exhibits time-of-day-dependent oscillations in circadian clock genes and vascular function that are attenuated following obstructive sleep apnea. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2806-2819.	2.4	24
26	Obstructive Sleep Apnea-Induced Hypertension: Role of the Gut Microbiota. Current Hypertension Reports, 2017, 19, 35.	1.5	25
27	Abstract WP427: Examining the Role of Gut Dysbiosis in Cerebral Small Vessel Disease. Stroke, 2017, 48, .	1.0	0
28	Abstract 007: Obstructive Sleep Apnea Induced Hypertension Involves Gut Dysbiosis and Neuroinflammation. Hypertension, 2017, 70, .	1.3	0
29	Role of the Gut Microbiome in Obstructive Sleep Apnea–Induced Hypertension. Hypertension, 2016, 67, 469-474.	1.3	252
30	Increased Cerebrovascular Sensitivity to Endothelin-1 in a Rat Model of Obstructive Sleep Apnea: A Role for Endothelin Receptor B. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 402-411.	2.4	18
31	Pathological Effects of Obstructive Apneas During the Sleep Cycle in an Animal Model of Cerebral Small Vessel Disease. Hypertension, 2015, 66, 913-917.	1.3	11
32	Obstructive Sleep Apnea Attenuates the Cerebrovascular Circadian Clock and Rhythms in Vascular Function. FASEB Journal, 2015, 29, 645.2.	0.2	0
33	Abstract 46: Obstructive Sleep Apnea (OSA) Accelerates Cerebral Pathology in Spontaneously Hypertensive Stroke Prone Rat (SHRsp). Stroke, 2015, 46, .	1.0	0
34	A new rodent model for obstructive sleep apnea: effects on ATP-mediated dilations in cerebral arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R334-R342.	0.9	32
35	Abstract 151: The Effects of Obstructive Sleep Apnea on the Cerebral Vascular Wall. Stroke, 2013, 44, .	1.0	0
36	Abstract 208: Altered Cerebrovascular Reactivity Following One Month of Obstructive Sleep Apnea. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	1

DAVID J DURGAN

#	Article	IF	CITATIONS
37	Cerebrovascular Consequences of Obstructive Sleep Apnea. Journal of the American Heart Association, 2012, 1, e000091.	1.6	146
38	Cerebrovascular Consequences of Obstructive Sleep Apnea. FASEB Journal, 2012, 26, 899.5.	0.2	2
39	Linking the Cardiomyocyte Circadian Clock to Myocardial Metabolism. Cardiovascular Drugs and Therapy, 2008, 22, 115-124.	1.3	10
40	Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2480-H2497.	1.5	83
41	The Circadian Clock within the Cardiomyocyte Is Essential for Responsiveness of the Heart to Fatty Acids. Journal of Biological Chemistry, 2006, 281, 24254-24269.	1.6	144