
Thomas A Steitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 A Resolution. Science, 2000, 289, 905-920.	6.0	3,132
2	The Structural Basis of Ribosome Activity in Peptide Bond Synthesis. Science, 2000, 289, 920-930.	6.0	2,045
3	DNA Polymerases: Structural Diversity and Common Mechanisms. Journal of Biological Chemistry, 1999, 274, 17395-17398.	1.6	741
4	Structure of catabolite gene activator protein at 2.9 Ã resolution suggests binding to left-handed B-DNA. Nature, 1981, 290, 744-749.	13.7	690
5	A mechanism for all polymerases. Nature, 1998, 391, 231-232.	13.7	557
6	Structure of the Replicating Complex of a Pol \hat{I}_{\pm} Family DNA Polymerase. Cell, 2001, 105, 657-667.	13.5	547
7	The Structures of Four Macrolide Antibiotics Bound to the Large Ribosomal Subunit. Molecular Cell, 2002, 10, 117-128.	4.5	520
8	Insights into Editing from an Ile-tRNA Synthetase Structure with tRNAIle and Mupirocin. Science, 1999, 285, 1074-1077.	6.0	425
9	Structures of MLSBK Antibiotics Bound to Mutated Large Ribosomal Subunits Provide a Structural Explanation for Resistance. Cell, 2005, 121, 257-270.	13.5	401
10	Structures of Five Antibiotics Bound at the Peptidyl Transferase Center of the Large Ribosomal Subunit. Journal of Molecular Biology, 2003, 330, 1061-1075.	2.0	372
11	A structural understanding of the dynamic ribosome machine. Nature Reviews Molecular Cell Biology, 2008, 9, 242-253.	16.1	364
12	Structure of Taq polymerase with DNA at the polymerase active site. Nature, 1996, 382, 278-281.	13.7	333
13	An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature, 2005, 438, 520-524.	13.7	326
14	The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase. Cell, 2004, 116, 393-404.	13.5	310
15	Structural Basis for the Transition from Initiation to Elongation Transcription in T7 RNA Polymerase. Science, 2002, 298, 1387-1395.	6.0	309
16	Structural basis for initiation of transcription from an RNA polymerase–promoter complex. Nature, 1999, 399, 80-83.	13.7	295
17	Structural insights into peptide bond formation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11670-11675.	3.3	267
18	Crystal Structure of the Oxazolidinone Antibiotic Linezolid Bound to the 50S Ribosomal Subunit. Journal of Medicinal Chemistry, 2008, 51, 3353-3356.	2.9	267

#	Article	IF	CITATIONS
19	Crystal structure of the site-specific recombinase Î ³ δresolvase complexed with a 34 by cleavage site. Cell, 1995, 82, 193-207.	13.5	259
20	RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends in Biochemical Sciences, 2003, 28, 411-418.	3.7	255
21	Structural Insights into the Roles of Water and the 2′ Hydroxyl of the P Site tRNA in the Peptidyl Transferase Reaction. Molecular Cell, 2005, 20, 437-448.	4.5	253
22	Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17158-17163.	3.3	240
23	Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nature Structural and Molecular Biology, 2015, 22, 342-344.	3.6	224
24	Crystal Structures of the E.Âcoli Transcription Initiation Complexes with a Complete Bubble. Molecular Cell, 2015, 58, 534-540.	4.5	220
25	Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nature Structural and Molecular Biology, 2014, 21, 633-640.	3.6	213
26	Formation of the First Peptide Bond: The Structure of EF-P Bound to the 70 <i>S</i> Ribosome. Science, 2009, 325, 966-970.	6.0	201
27	Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annual Review of Biochemistry, 2018, 87, 451-478.	5.0	199
28	The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nature Structural and Molecular Biology, 2010, 17, 289-293.	3.6	194
29	How Hibernation Factors RMF, HPF, and YfiA Turn Off Protein Synthesis. Science, 2012, 336, 915-918.	6.0	193
30	A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nature Structural and Molecular Biology, 2014, 21, 787-793.	3.6	191
31	Crystal Structure of a DinB Lesion Bypass DNA Polymerase Catalytic Fragment Reveals a Classic Polymerase Catalytic Domain. Molecular Cell, 2001, 8, 427-437.	4.5	190
32	The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature, 2013, 500, 307-311.	13.7	163
33	The Mechanism of E.Âcoli RNA Polymerase Regulation by ppGpp Is Suggested by the Structure of their Complex. Molecular Cell, 2013, 50, 430-436.	4.5	159
34	U2504 Determines the Species Specificity of the A-Site Cleft Antibiotics:. Journal of Molecular Biology, 2009, 389, 146-156.	2.0	154
35	Poly(A) Tail Recognition by a Viral RNA Element Through Assembly of a Triple Helix. Science, 2010, 330, 1244-1247.	6.0	144
36	The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Nature Structural and Molecular Biology, 2015, 22, 466-469.	3.6	144

#	Article	IF	CITATIONS
37	Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. EMBO Journal, 2007, 26, 3494-3505.	3.5	140
38	Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Nucleic Acids Research, 2016, 44, 2439-2450.	6.5	132
39	The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases. Cell, 2006, 126, 893-904.	13.5	127
40	The crystal structure of the catalytic domain of the site-specific recombination enzyme γδ resolvase at 2.7 à resolution. Cell, 1990, 63, 1323-1329.	13.5	121
41	Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Nature, 2004, 430, 640-645.	13.7	120
42	Conformational Changes of Elongation Factor G on the Ribosome during tRNA Translocation. Cell, 2015, 160, 219-227.	13.5	117
43	Crystal Structures of the Bacillus stearothermophilus CCA-Adding Enzyme and Its Complexes with ATP or CTP. Cell, 2002, 111, 815-824.	13.5	115
44	Structure of a Synaptic ÂÂ Resolvase Tetramer Covalently Linked to Two Cleaved DNAs. Science, 2005, 309, 1210-1215.	6.0	114
45	Structural Basis for the Rescue of Stalled Ribosomes: Structure of YaeJ Bound to the Ribosome. Science, 2012, 335, 1370-1372.	6.0	101
46	Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16724-16729.	3.3	101
47	The Structure of a Transcribing T7 RNA Polymerase in Transition from Initiation to Elongation. Science, 2008, 322, 553-557.	6.0	98
48	Insights into the Replisome from the Structure of a Ternary Complex of the DNA Polymerase III α-Subunit. Journal of Molecular Biology, 2008, 382, 859-869.	2.0	85
49	Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. Rna, 2003, 9, 1345-1352.	1.6	81
50	Structures of <i>E</i> . <i>coli</i> Ïf ^S -transcription initiation complexes provide new insights into polymerase mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4051-4056.	3.3	80
51	Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A. Molecular Cell, 2015, 58, 832-844.	4.5	79
52	Structures of Normal Single-Stranded DNA and Deoxyribo-3â€~-S-phosphorothiolates Bound to the 3â€~-5â€~ Exonucleolytic Active Site of DNA Polymerase I from Escherichia coli,. Biochemistry, 1999, 38, 696-704.	1.2	77
53	Visualizing polynucleotide polymerase machines at work. EMBO Journal, 2006, 25, 3458-3468.	3.5	76
54	A story with a good ending: tRNA 3′-end maturation by CCA-adding enzymes. Current Opinion in Structural Biology, 2006, 16, 12-17.	2.6	75

#	Article	IF	CITATIONS
55	Mutations Outside the Anisomycin-Binding Site Can Make Ribosomes Drug-Resistant. Journal of Molecular Biology, 2008, 379, 505-519.	2.0	75
56	Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13028-13033.	3.3	75
57	The structural changes of T7 RNA polymerase from transcription initiation to elongation. Current Opinion in Structural Biology, 2009, 19, 683-690.	2.6	74
58	Amicoumacin A Inhibits Translation by Stabilizing mRNA Interaction with the Ribosome. Molecular Cell, 2014, 56, 531-540.	4.5	73
59	Structural basis of bacterial transcription activation. Science, 2017, 358, 947-951.	6.0	71
60	Identification of Dihydrofuro[3,4- <i>d</i>]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties. Journal of Medicinal Chemistry, 2019, 62, 1484-1501.	2.9	70
61	Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Research, 2016, 44, 4978-4987.	6.5	69
62	Crystal Structures of an Archaeal Class I CCA-Adding Enzyme and Its Nucleotide Complexes. Molecular Cell, 2003, 12, 1165-1172.	4.5	66
63	The structure of LepA, the ribosomal back translocase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4673-4678.	3.3	66
64	The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. Current Opinion in Structural Biology, 2004, 14, 4-9.	2.6	59
65	Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors. ELife, 2018, 7, .	2.8	57
66	Crystal structure of Pistol, a class of self-cleaving ribozyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1021-1026.	3.3	56
67	Structural basis for transcription reactivation by RapA. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2006-2010.	3.3	53
68	Structures of Triacetyloleandomycin and Mycalamide A Bind to the Large Ribosomal Subunit of <i>Haloarcula marismortui</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 5010-5014.	1.4	50
69	Implications of structures of synaptic tetramers of ÂÂ resolvase for the mechanism of recombination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10642-10647.	3.3	47
70	Crystal Structure of the Human Ribosome in Complex with DENR-MCT-1. Cell Reports, 2017, 20, 521-528.	2.9	47
71	The Structures of Antibiotics Bound to the E Site Region of the 50 S Ribosomal Subunit of Haloarcula marismortui: 13-Deoxytedanolide and Girodazole. Journal of Molecular Biology, 2007, 367, 1471-1479.	2.0	45
72	The Antibiotic Thermorubin Inhibits Protein Synthesis by Binding to Inter-Subunit Bridge B2a of the Ribosome. Journal of Molecular Biology, 2012, 416, 571-578.	2.0	42

#	Article	IF	CITATIONS
73	Negamycin Interferes with Decoding and Translocation by Simultaneous Interaction with rRNA and tRNA. Molecular Cell, 2014, 56, 541-550.	4.5	41
74	Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 17-23.	1.8	39
75	Crystal structure of elongation factor 4 bound to a clockwise ratcheted ribosome. Science, 2014, 345, 684-687.	6.0	36
76	The Antibiotics Dityromycin and GE82832 Bind Protein S12 and Block EF-G-Catalyzed Translocation. Cell Reports, 2014, 6, 357-365.	2.9	36
77	Structural insights into NusG regulating transcription elongation. Nucleic Acids Research, 2017, 45, 968-974.	6.5	33
78	On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit. FEBS Letters, 2005, 579, 955-958.	1.3	32
79	Use of Chemically Modified Nucleotides to Determine a 62-Nucleotide RNA Crystal Structure: A Survey of Phosphorothioates, Br, Pt and Hg. Journal of Biomolecular Structure and Dynamics, 1997, 15, 165-172.	2.0	31
80	How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA. Science, 2010, 330, 937-940.	6.0	29
81	RNA stabilization by a poly(A) tail 3′-end binding pocket and other modes of poly(A)-RNA interaction. Science, 2021, 371, .	6.0	29
82	Crystal structure of an intermediate of rotating dimers within the synaptic tetramer of the G-segment invertase. Nucleic Acids Research, 2013, 41, 2673-2682.	6.5	24
83	Elongation factor 4 remodels the A-site tRNA on the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4994-4999.	3.3	19
84	Crystal structure of the DENR-MCT-1 complex revealed zinc-binding site essential for heterodimer formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 528-533.	3.3	19
85	Elements of ribosomal drug resistance and specificity. Current Opinion in Structural Biology, 2012, 22, 750-758.	2.6	17
86	Structure of the PolIIIα-τc-DNA Complex Suggests an Atomic Model of the Replisome. Structure, 2013, 21, 658-664.	1.6	15
87	Crystal Structure of Human Profilaggrin S100 Domain and Identification of Target Proteins Annexin II, Stratifin, and HSP27. Journal of Investigative Dermatology, 2015, 135, 1801-1809.	0.3	13
88	Crystal Structure of the C-terminal Domain of Human eIF2D and Its Implications on Eukaryotic Translation Initiation. Journal of Molecular Biology, 2017, 429, 2765-2771.	2.0	13
89	A structure-based kinetic model of transcription. Transcription, 2017, 8, 1-8.	1.7	11
90	Protomer Structure of Oligomeric Enzymes: Symmetry and Allosteric Interactions in Yeast Hexokinase. Biochemical Society Transactions, 1977, 5, 620-623.	1.6	5

#	Article	IF	CITATIONS
91	The Structures of Four Macrolide Antibiotics Bound to the Large Ribosomal Subunit. journal of hand surgery Asian-Pacific volume, The, 2020, , 525-536.	0.2	5
92	The Structure of Yeast Hexokinase and its Complexes with Substrates. Biochemical Society Transactions, 1974, 2, 52-54.	1.6	4
93	Collecting Butterflies and the Protein Structure Initiative: The Right Questions?. Structure, 2007, 15, 1523-1524.	1.6	4
94	Perspectives on the ribosome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160537.	1.8	4
95	Structural Insights into Transcription Initiation from De Novo RNA Synthesis to Transitioning into Elongation. IScience, 2020, 23, 101445.	1.9	4
96	Molecular dynamics analysis of Mg ²⁺ â€dependent cleavage of a pistol ribozyme reveals a failâ€safe secondary ion for catalysis. Journal of Computational Chemistry, 2020, 41, 1345-1352.	1.5	4
97	Exploiting large non-isomorphous differences for phase determination of a G-segment invertase–DNA complex. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 685-693.	2.5	4
98	Structural Insights into the Functions of the Large Ribosomal Subunit, a Major Antibiotic Target. Keio Journal of Medicine, 2008, 57, 1-14.	0.5	4
99	Crystal structure of the C-terminal domain of DENR. Computational and Structural Biotechnology Journal, 2020, 18, 696-704.	1.9	3
100	Antimicrobial peptides targeting bacterial ribosome. Oncotarget, 2015, 6, 18744-18745.	0.8	3
101	Structure of DNA Polymerase I Klenow Fragment Bound to Duplex DNA. journal of hand surgery Asian-Pacific volume, The, 2020, , 270-273.	0.2	3
102	Frederic M. Richards (1925-2009). Science, 2009, 323, 1181-1181.	6.0	2
103	Crystal Structure of the Large Ribosomal Subunit at 5-Angstrom Resolution. , 0, , 11-20.		1
104	Building a Replisome from Interacting Pieces: Sliding Clamp Complexed to a Peptide from DNA Polymerase and a Polymerase Editing Complex. journal of hand surgery Asian-Pacific volume, The, 2020, , 306-317.	0.2	1
105	The Structural Basis of Ribosome Activity in Peptide Bond Synthesis. journal of hand surgery Asian-Pacific volume, The, 2020, , 501-511.	0.2	1
106	The roles of RNA in the peptidyl transferase reaction and its inhibition by antibiotics. FASEB Journal, 2006, 20, A422.	0.2	0
107	Structural basis for base discrimination by RB69 DNA polymerase. FASEB Journal, 2008, 22, 593.2.	0.2	0
108	Crystallization of Escherichia coli 70S Ribosome in complex with tRNAs. FASEB Journal, 2012, 26, 550.1.	0.2	0

#	Article	IF	CITATIONS
109	Crystal Structure of a CAP-DNA Complex: The DNA Is Bent by 90°. journal of hand surgery Asian-Pacific volume, The, 2020, , 210-216.	0.2	0
110	Structural Insights into the Roles of Water and the 2′ Hydroxyl of the P Site tRNA in the Peptidyl Transferase Reaction. journal of hand surgery Asian-Pacific volume, The, 2020, , 557-568.	0.2	0
111	DNA Polymerases: Structural Diversity and Common Mechanisms. journal of hand surgery Asian-Pacific volume, The, 2020, , 318-321.	0.2	0
112	The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase. journal of hand surgery Asian-Pacific volume, The, 2020, , 342-353.	0.2	0
113	Structural basis for initiation of transcription from an RNA polymerase-promoter complex. journal of hand surgery Asian-Pacific volume, The, 2020, , 297-300.	0.2	0
114	Revisiting the structures of several antibiotics bound to the bacterial ribosome. journal of hand surgery Asian-Pacific volume, The, 2020, , 589-594.	0.2	0
115	Structures of Five Antibiotics Bound at the Peptidyl Transferase Center of the Large Ribosomal Subunit. journal of hand surgery Asian-Pacific volume, The, 2020, , 537-551.	0.2	0
116	Structure of Catabolite Gene Activator Protein at 2.9-Ã Resolution. journal of hand surgery Asian-Pacific volume, The, 2020, , 187-193.	0.2	0
117	Crystal structure of <i>Thermus aquaticus</i> DNA polymerase. journal of hand surgery Asian-Pacific volume, The, 2020, , 288-292.	0.2	0
118	Structure of <i>Taq</i> polymerase with DNA at the polymerase active site. journal of hand surgery Asian-Pacific volume, The, 2020, , 293-296.	0.2	0
119	Structural basis for the 3′ – 5′ exonuclease activity of <i>Escherichia coli</i> DNA polymerase I: a two metal ion mechanism. journal of hand surgery Asian-Pacific volume, The, 2020, , 245-253.	0.2	0
120	Structure of a Complex Between Yeast Hexokinase A and Glucose. journal of hand surgery Asian-Pacific volume, The, 2020, , 108-127.	0.2	0
121	A general two-metal-ion mechanism for catalytic RNA. journal of hand surgery Asian-Pacific volume, The, 2020, , 597-601.	0.2	0
122	Structure of a Complex of Catabolite Gene Activator Protein and Cyclic AMP Refined at 2·5 Ã Resolution. journal of hand surgery Asian-Pacific volume, The, 2020, , 194-209.	0.2	0
123	Structure of a Synaptic Î ³ δ Resolvase Tetramer Covalently Linked to Two Cleaved DNAs. journal of hand surgery Asian-Pacific volume, The, 2020, , 447-452.	0.2	0
124	Glucose-induced conformational change in yeast hexokinase. journal of hand surgery Asian-Pacific volume, The, 2020, , 65-69.	0.2	0
125	Structural Basis for the Transition from Initiation to Elongation Transcription in T7 RNA Polymerase. journal of hand surgery Asian-Pacific volume, The, 2020, , 333-341.	0.2	0
126	Structural Basis for Transfer RNA Aminoacylation by <i>Escherichia coli</i> Glutaminyl-tRNA Synthetase. journal of hand surgery Asian-Pacific volume, The, 2020, , 401-414.	0.2	0

#	Article	IF	CITATIONS
127	Structure of a Complex Between Yeast Hexokinase A and Glucose. journal of hand surgery Asian-Pacific volume, The, 2020, , 81-107.	0.2	0
128	The Hexameric Helicase DnaB Adopts a Nonplanar Conformation during Translocation. journal of hand surgery Asian-Pacific volume, The, 2020, , 365-375.	0.2	0