Harel Dahari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003226/publications.pdf

Version: 2024-02-01

100 5,961 31 papers citations h-index

31 62
h-index g-index

106 106 all docs citations

106 times ranked 4234 citing authors

#	Article	IF	CITATIONS
1	Mathematical modeling suggests that entry-inhibitor bulevirtide may interfere with hepatitis D virus clearance from circulation. Journal of Hepatology, 2022, 76, 1229-1231.	1.8	5
2	Machine learning for mathematical models of HCV kinetics during antiviral therapy. Mathematical Biosciences, 2022, 343, 108756.	0.9	6
3	People who inject drugs in metropolitan Chicago: A meta-analysis of data from 1997-2017 to inform interventions and computational modeling toward hepatitis C microelimination. PLoS ONE, 2022, 17, e0248850.	1.1	9
4	Modeling-based response-guided DAA therapy for chronic hepatitis C to identify individuals for shortening treatment duration. Open Forum Infectious Diseases, 2022, 9, ofac157.	0.4	2
5	Modeling hepatitis C micro-elimination among people who inject drugs with direct-acting antivirals in metropolitan Chicago. PLoS ONE, 2022, 17, e0264983.	1.1	7
6	Advances in Parameter Estimation and Learning from Data for Mathematical Models of Hepatitis C Viral Kinetics. Mathematics, 2022, 10, 2136.	1.1	2
7	Letter to the Editor: Examining HBVâ€RNA Kinetics During NA Treatment—Are NAs Multifunctional Antiviral Agents?. Hepatology, 2021, 74, 1708-1709.	3.6	0
8	Early HBV RNA kinetics under NA treatment may reveal new insights into HBV RNA dynamics and NA mode of actionâ€more detailed kinetic studies are needed. Journal of Viral Hepatitis, 2021, 28, 687-688.	1.0	2
9	Understanding the antiviral effects of RNAi-based therapy in HBeAg-positive chronic hepatitis B infection. Scientific Reports, 2021, 11, 200.	1.6	15
10	Understanding Hepatitis B Virus Dynamics and the Antiviral Effect of Interferon Alpha Treatment in Humanized Chimeric Mice. Journal of Virology, 2021, 95, e0049220.	1.5	14
11	HCV Spread Kinetics Reveal Varying Contributions of Transmission Modes to Infection Dynamics. Viruses, 2021, 13, 1308.	1.5	9
12	A Mathematical Analysis of HDV Genotypes: From Molecules to Cells. Mathematics, 2021, 9, 2063.	1.1	2
13	Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules, 2021, 11, 1380.	1.8	39
14	Ginkgolic Acid Inhibits Coronavirus Strain 229E Infection of Human Epithelial Lung Cells. Pharmaceuticals, 2021, 14, 980.	1.7	4
15	Modeling hepatitis C virus kinetics during liver transplantation reveals the role of the liver in virus clearance. ELife, $2021,10,$	2.8	4
16	A Mathematical Model for Early HBV and -HDV Kinetics during Anti-HDV Treatment. Mathematics, 2021, 9, 3323.	1.1	2
17	Efficient Methods for Parameter Estimation of Ordinary and Partial Differential Equation Models of Viral Hepatitis Kinetics. Mathematics, 2020, 8, 1483.	1.1	2
18	Modeling based response guided therapy in subjects with recent hepatitis C infection. Antiviral Research, 2020, 180, 104862.	1.9	6

#	Article	IF	Citations
19	Modeling-Based Response-Guided Glecaprevir-Pibrentasvir Therapy for Chronic Hepatitis C to Identify Patients for Ultrashort Treatment Duration. Journal of Infectious Diseases, 2020, 222, 1165-1169.	1.9	10
20	Response guided therapy for reducing duration of direct acting antivirals in chronic hepatitis C infected patients: a Pilot study. Scientific Reports, 2020, 10, 17820.	1.6	20
21	Modelling hepatitis D virus RNA and HBsAg dynamics during nucleic acid polymer monotherapy suggest rapid turnover of HBsAg. Scientific Reports, 2020, 10, 7837.	1.6	24
22	Short-course, direct-acting antivirals and ezetimibe to prevent HCV infection in recipients of organs from HCV-infected donors: a phase 3, single-centre, open-label study. The Lancet Gastroenterology and Hepatology, 2020, 5, 649-657.	3.7	76
23	Modeling Challenges of Ebola Virus–Host Dynamics during Infection and Treatment. Viruses, 2020, 12, 106.	1.5	7
24	Sustained virological response following an 11-day course of direct acting antiviral therapy for hepatitis C infection. Journal of Gastrointestinal and Liver Diseases, 2020, 29, 270-270.	0.5	3
25	HCVMultiscaleFit: A simulator for parameter estimation in multiscale models of hepatitis C virus dynamics. AIP Conference Proceedings, 2020, 2293, .	0.3	1
26	Plasma Hepatitis E Virus Kinetics in Solid Organ Transplant Patients Receiving Ribavirin. Viruses, 2019, 11, 630.	1.5	9
27	A Parameter Estimation Method for Multiscale Models of Hepatitis C Virus Dynamics. Bulletin of Mathematical Biology, 2019, 81, 3675-3721.	0.9	9
28	A randomized, proof-of-concept clinical trial on repurposing chlorcyclizine for the treatment of chronic hepatitis C. Antiviral Research, 2019, 163, 149-155.	1.9	6
29	Early Multiphasic HBV Infection Initiation Kinetics Is Not Clone-Specific and Is Not Affected by Hepatitis D Virus (HDV) Infection. Viruses, 2019, 11, 263.	1.5	1
30	Modeling indicates efficient vaccine-based interventions for the elimination of hepatitis C virus among persons who inject drugs in metropolitan Chicago. Vaccine, 2019, 37, 2608-2616.	1.7	11
31	Modeling suggests that microliter volumes of contaminated blood caused an outbreak of hepatitis C during computerized tomography. PLoS ONE, 2019, 14, e0210173.	1.1	6
32	Multi-Objective Model Exploration of Hepatitis C Elimination in an Agent-Based Model of People who Inject Drugs., 2019, 2019, 1008-1019.		5
33	Early HCV viral kinetics under DAAs may optimize duration of therapy in patients with compensated cirrhosis. Liver International, 2019, 39, 826-834.	1.9	15
34	Acute hepatitis B virus infection in humanized chimeric mice has multiphasic viral kinetics. Hepatology, 2018, 68, 473-484.	3.6	30
35	Numerical schemes for solving and optimizing multiscale models with age of hepatitis C virus dynamics. Mathematical Biosciences, 2018, 300, 1-13.	0.9	13
36	High-Risk Geographic Mobility Patterns among Young Urban and Suburban Persons who Inject Drugs and their Injection Network Members. Journal of Urban Health, 2018, 95, 71-82.	1.8	22

#	Article	lF	Citations
37	How to eliminate HCV in people who inject drugs in the USA. Lancet Infectious Diseases, The, 2018, 18, 134-135.	4.6	8
38	HCVMultiscaleDyn: A simulator for the multiscale model of hepatitis C virus dynamics. AIP Conference Proceedings, 2018, , .	0.3	0
39	Accounting for Space—Quantification of Cell-To-Cell Transmission Kinetics Using Virus Dynamics Models. Viruses, 2018, 10, 200.	1.5	22
40	Modeling of patient virus titers suggests that availability of a vaccine could reduce hepatitis C virus transmission among injecting drug users. Science Translational Medicine, 2018, 10, .	5.8	29
41	Prevalence of end of treatment RNA-positive/sustained viral response in HCV patients treated with sofosbuvir combination therapies. Therapeutic Advances in Gastroenterology, 2017, 10, 68-73.	1.4	15
42	Pharmacokinetics and pharmacodynamics modeling of lonafarnib in patients with chronic hepatitis delta virus infection. Hepatology Communications, 2017, 1, 288-292.	2.0	10
43	Modeling HCV cure after an ultra-short duration of therapy with direct acting agents. Antiviral Research, 2017, 144, 281-285.	1.9	26
44	End of treatment RNA-positive/sustained viral response in an individual with acute hepatitis C virus infection treated with direct-acting antivirals. Therapeutic Advances in Gastroenterology, 2017, 10, 429-430.	1.4	6
45	A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics. Frontiers in Applied Mathematics and Statistics, 2017, 3, .	0.7	6
46	HCV kinetic and modeling analyses project shorter durations to cure under combined therapy with daclatasvir and asunaprevir in chronic HCV-infected patients. PLoS ONE, 2017, 12, e0187409.	1.1	19
47	Cure prevents more than transmission of hepatitis C virus. Hepatology, 2016, 64, 1003-1004.	3.6	2
48	Resurrection of response-guided therapy for sofosbuvir combination therapies. Journal of Hepatology, 2016, 65, 462-464.	1.8	5
49	HCV kinetic and modeling analyses indicate similar time to cure among sofosbuvir combination regimens with daclatasvir, simeprevir or ledipasvir. Journal of Hepatology, 2016, 64, 1232-1239.	1.8	65
50	Hepatitis C virus cures after direct acting antiviral-related drug-induced liver injury: Case report. World Journal of Hepatology, 2016, 8, 858.	0.8	10
51	Severity of Liver Disease Affects HCV Kinetics in Patients Treated with Intravenous Silibinin Monotherapy. Antiviral Therapy, 2015, 20, 149-155.	0.6	14
52	Reply. Hepatology, 2015, 61, 2118-2119.	3.6	0
53	Mathematical Modeling of Hepatitis C Prevalence Reduction with Antiviral Treatment Scale-Up in Persons Who Inject Drugs in Metropolitan Chicago. PLoS ONE, 2015, 10, e0135901.	1.1	30
54	Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infectious Diseases, The, 2015, 15, 1167-1174.	4.6	216

#	Article	IF	Citations
55	Quantification of Hepatitis C Virus Cell-to-Cell Spread Using a Stochastic Modeling Approach. Journal of Virology, 2015, 89, 6551-6561.	1.5	32
56	Sustained virological response with intravenous silibinin: individualized <scp>IFN</scp> â€free therapy via realâ€time modelling of <scp>HCV</scp> kinetics. Liver International, 2015, 35, 289-294.	1.9	32
57	Agent-Based Model Forecasts Aging of the Population of People Who Inject Drugs in Metropolitan Chicago and Changing Prevalence of Hepatitis C Infections. PLoS ONE, 2015, 10, e0137993.	1.1	22
58	Individualized treatment for patients with low HCV load (Genotype 1): A viral kinetic approach. Hepatology, 2014, 59, 2422-2423.	3.6	3
59	Understanding early serum hepatitis D virus and hepatitis B surface antigen kinetics during pegylated interferonâ€alpha therapy via mathematical modeling. Hepatology, 2014, 60, 1902-1910.	3.6	59
60	Effect of ribavirin on viral kinetics and liver gene expression in chronic hepatitis C. Gut, 2014, 63, 161-169.	6.1	51
61	Treatment of hepatitis C with an interferon-based lead-in phase: a perspective from mathematical modelling. Antiviral Therapy, 2014, 19, 469-477.	0.6	6
62	Understanding triphasic HCV decline during treatment in the era of IL28B polymorphisms and direct acting antiviral agents via mathematical modeling. Journal of Hepatology, 2013, 58, 840-842.	1.8	4
63	Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3991-3996.	3.3	298
64	The hepatitis C virus NS5A inhibitor daclatasvir has a dual mode of action and leads to a new virus half-life estimate. Expert Review of Gastroenterology and Hepatology, 2013, 7, 397-399.	1.4	14
65	Modeling the Acute and Chronic Phases of Theiler Murine Encephalomyelitis Virus Infection. Journal of Virology, 2013, 87, 4052-4059.	1.5	15
66	Silymarin for HCV infection. Antiviral Therapy, 2013, 18, 141-147.	0.6	55
67	Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model. PLoS Computational Biology, 2013, 9, e1002959.	1.5	83
68	Understanding silibinin's modes of action against HCV using viral kinetic modeling. Journal of Hepatology, 2012, 56, 1019-1024.	1.8	47
69	Hepatitis C viral kinetics with the nucleoside polymerase inhibitor mericitabine (RG7128). Hepatology, 2012, 55, 1030-1037.	3.6	51
70	Hepatitis C Viral Kinetics in the Era of Direct Acting Antiviral Agents and Interleukin-28B. Current Hepatitis Reports, 2011, 10, 214-227.	0.3	52
71	Silibinin mode(s) of action against hepatitis C virus: A controversy yet to be resolved. Hepatology, 2011, 54, 749-749.	3.6	8
72	Thiazole antibiotics against breast cancer. Cell Cycle, 2010, 9, 1214-1217.	1.3	29

#	Article	lF	Citations
73	The rate of hepatitis C virus infection initiation in vitro is directly related to particle density. Virology, 2010, 407, 110-119.	1.1	17
74	Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. Hepatology, 2010, 52, 875-885.	3.6	63
75	Rapid Emergence of Protease Inhibitor Resistance in Hepatitis C Virus. Science Translational Medicine, 2010, 2, 30ra32.	5.8	327
76	Meta-Analysis of Hepatitis C Virus Vaccine Efficacy in Chimpanzees Indicates an Importance for Structural Proteins. Gastroenterology, 2010, 139, 965-974.	0.6	85
77	Pharmacodynamics of PEG-IFN-α-2a in HIV/HCV co-infected patients: Implications for treatment outcomes. Journal of Hepatology, 2010, 53, 460-467.	1.8	31
78	Modeling Subgenomic Hepatitis C Virus RNA Kinetics during Treatment with Alpha Interferon. Journal of Virology, 2009, 83, 6383-6390.	1.5	56
79	Modeling complex decay profiles of hepatitis B virus during antiviral therapy. Hepatology, 2009, 49, 32-38.	3.6	86
80	Hepatitis B virus clearance rate estimates. Hepatology, 2009, 49, 1779-1780.	3.6	10
81	Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. Journal of Theoretical Biology, 2009, 259, 751-759.	0.8	80
82	A Mathematical Model of Hepatitis C Virus Dynamics in Patients With High Baseline Viral Loads or Advanced Liver Disease. Gastroenterology, 2009, 136, 1402-1409.	0.6	56
83	Analysis of Hepatitis C Virus Infection Models with Hepatocyte Homeostasis. SIAM Journal on Applied Mathematics, 2009, 69, 999-1023.	0.8	49
84	Mathematical Modeling of HCV Infection and Treatment. Methods in Molecular Biology, 2009, 510, 439-453.	0.4	19
85	Modelling hepatitis C virus kinetics: the relationship between the infected cell loss rate and the final slope of viral decay. Antiviral Therapy, 2009, 14, 459-64.	0.6	16
86	Modelling Hepatitis C virus Kinetics: The Relationship between the Infected Cell Loss rate and the Final Slope of Viral Decay. Antiviral Therapy, 2009, 14, 459-464.	0.6	31
87	Hepatitis C viral kinetics in special populations. Current Hepatitis Reports, 2008, 7, 97-105.	0.3	12
88	Mathematical Modeling of Subgenomic Hepatitis C Virus Replication in Huh-7 Cells. Journal of Virology, 2007, 81, 750-760.	1.5	95
89	Early ribavirin pharmacokinetics, HCV RNA and alanine aminotransferase kinetics in HIV/HCV co-infected patients during treatment with pegylated interferon and ribavirin. Journal of Hepatology, 2007, 47, 23-30.	1.8	39
90	Triphasic decline of hepatitis C virus RNA during antiviral therapy. Hepatology, 2007, 46, 16-21.	3.6	115

#	Article	IF	CITATIONS
91	Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy. Journal of Theoretical Biology, 2007, 247, 371-381.	0.8	156
92	Hepatitis C virus RNA kinetics: Drug efficacy and the rate of HCV-infected cells loss. World Journal of Gastroenterology, 2007, 13, 3020.	1.4	5
93	The extrahepatic contribution to HCV plasma viremia. Journal of Hepatology, 2006, 45, 626-627.	1.8	8
94	Second hepatitis C replication compartment indicated by viral dynamics during liver transplantation. Journal of Hepatology, 2005, 42, 491-498.	1.8	77
95	Mathematical modeling of primary hepatitis C infection: Noncytolytic clearance and early blockage of virion production. Gastroenterology, 2005, 128, 1056-1066.	0.6	109
96	Hepatitis C virus kinetics and host responses associated with disease and outcome of infection in chimpanzees. Hepatology, 2004, 39, 1709-1720.	3.6	138
97	Antiviral action of ribavirin in chronic hepatitis C. Gastroenterology, 2004, 126, 703-714.	0.6	261
98	Clinical utility of total HCV core antigen quantification: A new indirect marker of HCV replication. Hepatology, 2002, 36, 211-218.	3.6	186
99	Differences in Viral Dynamics between Genotypes 1 and 2 of Hepatitis C Virus. Journal of Infectious Diseases, 2000, 182, 28-35.	1.9	214
100	Hepatitis C Viral Dynamics in Vivo and the Antiviral Efficacy of Interferon-Therapy., 1998, 282, 103-107.		1,875