
Valerie W Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003175/publications.pdf Version: 2024-02-01

VALEDIE WHIL

#	Article	IF	CITATIONS
1	Altered DNA methylation in a severe subtype of idiopathic autism: Evidence for sex differences in affected metabolic pathways. Autism, 2021, 25, 887-910.	2.4	14
2	Sex differences in the effects of prenatal bisphenol A exposure on autism-related genes and their relationships with the hippocampus functions. Scientific Reports, 2021, 11, 1241.	1.6	29
3	Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. International Journal of Molecular Sciences, 2021, 22, 13201.	1.8	17
4	Phenotypic Subtyping and Re-Analysis of Existing Methylation Data from Autistic Probands in Simplex Families Reveal ASD Subtype-Associated Differentially Methylated Genes and Biological Functions. International Journal of Molecular Sciences, 2020, 21, 6877.	1.8	18
5	Phenotypic Subtyping and Re-analyses of Existing Transcriptomic Data from Autistic Probands in Simplex Families Reveal Differentially Expressed and ASD Trait-Associated Genes. Frontiers in Neurology, 2020, 11, 578972.	1.1	4
6	Prenatal exposure to bisphenol A alters the transcriptome-interactome profiles of genes associated with Alzheimer's disease in the offspring hippocampus. Scientific Reports, 2020, 10, 9487.	1.6	33
7	ASD Phenotype—Genotype Associations in Concordant and Discordant Monozygotic and Dizygotic Twins Stratified by Severity of Autistic Traits. International Journal of Molecular Sciences, 2019, 20, 3804.	1.8	24
8	Sex Differences in the Effects of Prenatal Bisphenol A Exposure on Genes Associated with Autism Spectrum Disorder in the Hippocampus. Scientific Reports, 2019, 9, 3038.	1.6	46
9	Integrated genome-wide Alu methylation and transcriptome profiling analyses reveal novel epigenetic regulatory networks associated with autism spectrum disorder. Molecular Autism, 2018, 9, 27.	2.6	32
10	Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder?. Hormones and Behavior, 2018, 101, 13-21.	1.0	61
11	Epigenetic Research in Neuropsychiatric Disorders: the "Tissue Issue― Current Behavioral Neuroscience Reports, 2016, 3, 264-274.	0.6	113
12	Investigation of sex differences in the expression of RORA and its transcriptional targets in the brain as a potential contributor to the sex bias in autism. Molecular Autism, 2015, 6, 7.	2.6	68
13	Phenotype Definition: A Cornerstone of Autism Research, Diagnosis and Therapy. , 2014, , 3-22.		0
14	Searching in the "Dark― Non-coding RNA as a New Avenue of Autism Research. , 2014, , 175-202.		0
15	Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Molecular Autism, 2013, 4, 14.	2.6	99
16	The expanding genomic landscape of autism: discovering the â€~forest' beyond the â€~trees'. Future Neurology, 2013, 8, 29-42.	0.9	29
17	Differential recruitment of coregulators to the RORA promoter adds another layer of complexity to gene (dys) regulation by sex hormones in autism. Molecular Autism, 2013, 4, 39.	2.6	51
18	From Genes to Environment: Using Integrative Genomics to Build a "Systems‣evel―Understanding of Autism Spectrum Disorders. Child Development, 2013, 84, 89-103.	1.7	39

VALERIE W HU

#	Article	IF	CITATIONS
19	A Novel Stratification Method in Linkage Studies to Address Inter- and Intra-Family Heterogeneity in Autism. PLoS ONE, 2013, 8, e67569.	1.1	18
20	Developing a Predictive Gene Classifier for Autism Spectrum Disorders Based upon Differential Gene Expression Profiles of Phenotypic Subgroups. North American Journal of Medicine & Science, 2013, 6, .	3.8	32
21	Is retinoic acid-related orphan receptor-alpha (RORA) a target for gene–environment interactions contributing to autism?. NeuroToxicology, 2012, 33, 1434-1435.	1.4	22
22	Subphenotype-Dependent Disease Markers for Diagnosis and Personalized Treatment of Autism Spectrum Disorders. Disease Markers, 2012, 33, 277-288.	0.6	17
23	Subphenotype-dependent disease markers for diagnosis and personalized treatment of autism spectrum disorders. Disease Markers, 2012, 33, 277-88.	0.6	8
24	Sex Hormones in Autism: Androgens and Estrogens Differentially and Reciprocally Regulate RORA, a Novel Candidate Gene for Autism. PLoS ONE, 2011, 6, e17116.	1.1	178
25	A systems approach towards an understanding, diagnosis and personalized treatment of autism spectrum disorders. Pharmacogenomics, 2011, 12, 1235-1238.	0.6	8
26	Novel Autism Subtype-Dependent Genetic Variants Are Revealed by Quantitative Trait and Subphenotype Association Analyses of Published GWAS Data. PLoS ONE, 2011, 6, e19067.	1.1	82
27	Clobal methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, <i>RORA</i> , whose protein product is reduced in autistic brain. FASEB Journal, 2010, 24, 3036-3051.	0.2	320
28	Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Medicine, 2010, 2, 23.	3.6	196
29	Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis. PLoS ONE, 2009, 4, e5775.	1.1	134
30	Novel clustering of items from the Autism Diagnostic Interviewâ€Revised to define phenotypes within autism spectrum disorders. Autism Research, 2009, 2, 67-77.	2.1	108
31	Gene expression profiling differentiates autism case–controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Research, 2009, 2, 78-97.	2.1	184
32	Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics, 2006, 7, 118.	1.2	200
33	Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs. external gamma radiation. FASEB Journal, 2003, 17, 1470-1486.	0.2	30
34	3 Hâ€ŧhymidine is a defective tool with which to measure rates of DNA synthesis. FASEB Journal, 2002, 16, 1456-1457.	0.2	49
35	Metabolic radiolabeling: experimental tool or Trojan horse? 35 Sâ€Methionine induces DNA fragmentation and p53â€dependent ROS production. FASEB Journal, 2001, 15, 1562-1568.	0.2	41
36	Radiolabeling revisited: metabolic labeling with ³⁵ Sâ€methionine inhibits cell cycle progression, proliferation, and survival. FASEB Journal, 2000, 14, 448-454.	0.2	32

VALERIE W HU

#	Article	IF	CITATIONS
37	Chelation of iron within the erythrocytic Plasmodium falciparum parasite by iron chelators. Molecular and Biochemical Parasitology, 1999, 101, 43-59.	0.5	44
38	A Mitosis-specific Phosphorylation of the Gap Junction Protein Connexin43 in Human Vascular Cells: Biochemical Characterization and Localization. Journal of Cell Biology, 1997, 137, 203-210.	2.3	84
39	Interleukin-1α Suppresses Gap Junction-Mediated Intercellular Communication in Human Endothelial Cells. Experimental Cell Research, 1994, 213, 218-223.	1.2	30
40	Modulation of Gap Junctions in Senescent Endothelial Cells. Experimental Cell Research, 1994, 214, 172-176.	1.2	63
41	X-ray absorption edge studies on cyanide-bound cytochromecoxidase. FEBS Letters, 1977, 84, 287-290.	1.3	21