Gaurab Ganguly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003154/publications.pdf

Version: 2024-02-01

471371 360920 1,279 43 17 35 citations h-index g-index papers 47 47 47 1217 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Catalyzed Dehydrogenation of Ammonia–Borane by Iridium Dihydrogen Pincer Complex Differs from Ethane Dehydrogenation. Angewandte Chemie - International Edition, 2007, 46, 8153-8156.	7.2	194
2	The Role of Free Nâ€Heterocyclic Carbene (NHC) in the Catalytic Dehydrogenation of Ammonia–Borane in the Nickel NHC System. Angewandte Chemie - International Edition, 2009, 48, 2201-2205.	7.2	115
3	Oligomerization and Autocatalysis of NH2BH2 with Ammoniaâ^Borane. Inorganic Chemistry, 2009, 48, 1069-1081.	1.9	108
4	Combining Protons and Hydrides by Homogeneous Catalysis for Controlling the Release of Hydrogen from Ammonia–Borane: Present Status and Challenges. ACS Catalysis, 2016, 6, 7907-7934.	5 . 5	103
5	Catalytic Dehydrogenation of Ammonia Borane at Ni Monocarbene and Dicarbene Catalysts. Inorganic Chemistry, 2009, 48, 5418-5433.	1.9	72
6	Theoretical Studies on the Mechanism of Homogeneous Catalytic Olefin Hydrogenation and Amine–Borane Dehydrogenation by a Versatile Boryl-Ligand-Based Cobalt Catalyst. ACS Catalysis, 2015, 5, 2754-2769.	5 . 5	55
7	Changing Lanes from Concerted to Stepwise Hydrogenation: The Reduction Mechanism of Frustrated Lewis Acid–Base Pair Trapped CO ₂ to Methanol by Ammonia–Borane. Chemistry - A European Journal, 2011, 17, 435-439.	1.7	48
8	Unraveling the Crucial Role of Metal-Free Catalysis in Borazine and Polyborazylene Formation in Transition-Metal-Catalyzed Ammonia–Borane Dehydrogenation. ACS Catalysis, 2015, 5, 3478-3493.	5.5	47
9	Unfolding the crucial role of a nucleophile in Ziegler–Natta type Ir catalyzed polyaminoborane formation. Chemical Communications, 2014, 50, 5919.	2.2	38
10	The Role of Solvent and of Species Generated in Situ on the Kinetic Acceleration of Aminoborane Oligomerization. Chemistry - A European Journal, 2013, 19, 5812-5817.	1.7	34
11	A Mononuclear Nonheme Iron(IV)-Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C–H Bond Cleavage Reactivity. Inorganic Chemistry, 2019, 58, 1862-1876.	1.9	32
12	Ab Initio Analysis of Metal–Ligand Bonding in An(COT) ₂ with An=Th, U in Their Ground―and Coreâ€Excited States. Chemistry - A European Journal, 2020, 26, 1776-1788.	1.7	23
13	Breaking the Myth of the Recalcitrant Chemisorbed Hydrogens on Boron Nitride Nanotubes: A Theoretical Perspective. Angewandte Chemie - International Edition, 2012, 51, 4152-4156.	7.2	22
14	Mechanistic Details of Ru–Bis(pyridyl)borate Complex Catalyzed Dehydrogenation of Ammonia–Borane: Role of the Pendant Boron Ligand in Catalysis. ACS Catalysis, 2016, 6, 4068-4080.	5.5	20
15	Designing Efficient Solar-Thermal Fuels with $[\langle i\rangle n\langle i\rangle,\langle i\rangle n\langle i\rangle]$ (9,10) Anthracene Cyclophanes: A Theoretical Perspective. Journal of Physical Chemistry Letters, 2018, 9, 328-334.	2.1	20
16	In Pursuit of Sustainable Hydrogen Storage with Boronâ€Nitride Fullerene as the Storage Medium. ChemSusChem, 2016, 9, 1386-1391.	3.6	18
17	Frustrated Lewis Acid–Base-Pair-Catalyzed Amine-Borane Dehydrogenation. Inorganic Chemistry, 2020, 59, 1046-1056.	1.9	17
18	Theoretical Investigation on the Chemistry of Entrapment of the Elusive Aminoborane (H ₂ Nï£3/4BH ₂) Molecule. Chemistry - A European Journal, 2015, 21, 6340-6345.	1.7	16

#	Article	IF	Citations
19	Theoretical Investigations on the Mechanistic Aspects of O ₂ Activation by a Biomimetic Dinitrosyl Iron Complex. Chemistry - A European Journal, 2018, 24, 3330-3339.	1.7	16
20	Insight into the Electronic Structure of Formal Lanthanide(II) Complexes using Magnetic Circular Dichroism Spectroscopy. Organometallics, 2019, 38, 3124-3131.	1.1	16
21	Exploring the Crucial Role of Solvation on the Viability of Sustainable Hydrogen Storage in BN-fullerene: A Combined DFT and Ab Initio Molecular Dynamics Investigation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9808-9821.	3.2	15
22	Deciphering the cryptic role of a catalytic electron in a photochemical bond dissociation using excited state aromaticity markers. Physical Chemistry Chemical Physics, 2016, 18, 25308-25314.	1.3	14
23	Ammonia–Borane Dehydrogenation by Means of an Unexpected Pentacoordinate Boron Species: Insights from Density Functional and Molecular Dynamics Studies. Chemistry - A European Journal, 2013, 19, 17673-17678.	1.7	13
24	Designing an Effective Metalâ€Free Lewis Acid Catalyst for Ammoniaâ€Borane Dehydrogenation: A DFT Investigation on Triarylboranes. ChemCatChem, 2017, 9, 3870-3879.	1.8	13
25	Mono- and dinuclear oxidovanadium(<scp>v</scp>) complexes of an amine-bis(phenolate) ligand with bromo-peroxidase activities: synthesis, characterization, catalytic, kinetic and computational studies. Dalton Transactions, 2018, 47, 2799-2809.	1.6	12
26	Unearthing the Mechanism of Prebiotic Nitrile Bond Reduction in Hydrogen Cyanide through a Curious Association of Two Molecular Radical Anions. Chemistry - A European Journal, 2014, 20, 6348-6357.	1.7	11
27	Computational design of an Iridium based catalyst for releasing H ₂ from hydrogenated BN nanotubes. Chemical Communications, 2015, 51, 10532-10535.	2.2	11
28	Cis <i>–</i> Trans Conformational Analysis of δ-Azaproline in Peptides. Journal of Organic Chemistry, 2015, 80, 10585-10604.	1.7	11
29	Photochemical Hydrogenation of CO ₂ to CH ₃ OH and Pyridine to 1,2-Dihydropyridine Using Plasmon-Facilitated Chemisorbed Hydrogen on Au Surface: Theoretical Perspective. Journal of Physical Chemistry C, 2017, 121, 15326-15332.	1.5	10
30	Enhanced $5f$ - \hat{l} bonding in [U(C7H7)2] \hat{a} : C K-edge XAS, magnetism, and ab initio calculations. Chemical Communications, 2021, 57, 9562-9565.	2.2	10
31	A Metalâ€Free Strategy to Release Chemisorbed H ₂ from Hydrogenated Boron Nitride Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 12430-12435.	7.2	9
32	Theoretical Insights on the Effects of Mechanical Interlocking of Secondary Amines with Polyether Macrocycles for Frustratedâ€Lewisâ€Pairâ€Type Hydrogen Activation. Chemistry - A European Journal, 2013, 19, 11541-11546.	1.7	7
33	Understanding the Role of Aromaticity and Conformational Changes in Bond Dissociation Processes of Photo-Protecting Groups. Journal of Physical Chemistry A, 2020, 124, 3976-3983.	1.1	7
34	The curious saga of dehydrogenation/hydrogenation for chemical hydrogen storage: a mechanistic perspective. Chemical Communications, 2022, 58, 1672-1684.	2.2	7
35	A Serendipitous Rendezvous with a Four enter Twoâ€Electron Bonded Intermediate in the Aerial Oxidation of Hydrazine. Chemistry - A European Journal, 2016, 22, 1216-1222.	1.7	6
36	Unraveling the stability of cyclobutadiene complexes using aromaticity markers. Physical Chemistry Chemical Physics, 2021, 23, 16005-16012.	1.3	6

3

#	Article	IF	CITATIONS
37	SeD radical as a probe for the measurement of the time variation of the fine-structure constant \hat{l}_{\pm} and proton-to-electron mass ratio \hat{l}_{4} . Physical Review A, 2014, 90, .	1.0	4
38	Understanding the Unexpected Product Distribution in the Aerial Oxidation of Carbeneâ€Stabilized Diphosphorus Complex. Chemistry - A European Journal, 2018, 24, 4350-4360.	1.7	4
39	A Benzooxazoleâ€Based Probe for the Sensitive Detection of Hydrogen Sulfide: Kinetic and Transitionâ€State Studies and In Vitro Application in HepG2 Cells. ChemistrySelect, 2018, 3, 7283-7290.	0.7	4
40	Ab Initio Study of Vibronic and Magnetic 5f-to-5f and Dipole-Allowed 5f-to-6d and Charge-Transfer Transitions in $[UX < ub > 6 < sub > (sub > 6 < sub > 6 <$	2.3	4
41	Understanding the Role of Solvents and Spin–Orbit Coupling in an Oxygenâ€Assisted S N 2â€Ţype Oxidative Transmetalation Reaction. Chemistry - A European Journal, 2019, 25, 16606-16616.	1.7	2
42	Near-infrared <i>C</i> -term MCD spectroscopy of octahedral uranium(<scp>v</scp>) complexes. Dalton Transactions, 2021, 50, 5483-5492.	1.6	2
43	Frontispiece: Ab Initio Analysis of Metal–Ligand Bonding in An(COT) ₂ with An=Th, U in Their Ground―and Coreâ€Excited States. Chemistry - A European Journal, 2020, 26, .	1.7	0