Gamal Ramadan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003142/publications.pdf

Version: 2024-02-01

30	711	567281	552781
papers	citations	h-index	g-index
			O
30	30	30	1011
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sodium R-lipoate and enzymatically-modified isoquercitrin suppressed IgE-independent anaphylactic reactions and stress-induced gastric ulceration in mice. International Immunopharmacology, 2021, 97, 107735.	3.8	1
2	Whey protein concentrate and lactoferrin alleviated anaemia, immunotoxicity, and biochemical alterations in a mouse model of early hepatocarcinogenesis. International Dairy Journal, 2020, 102, 104603.	3.0	О
3	Dietary supplementation of Sargassum latifolium modulates thermo-respiratory response, inflammation, and oxidative stress in bacterial endotoxin-challenged male Barki sheep. Environmental Science and Pollution Research, 2020, 27, 33863-33871.	5.3	8
4	Dietary supplementation of brown seaweed (Sargassum latifolium) alleviates the environmental heat stress-induced toxicity in male Barki sheep (Ovis aries). Journal of Thermal Biology, 2020, 89, 102561.	2.5	18
5	Antihepatocarcinogenic activity of whey protein concentrate and lactoferrin in diethylnitrosamineâ€treated male albino mice. Environmental Toxicology, 2019, 34, 1025-1033.	4.0	10
6	Effects of pomegranate aril juice and its punicalagin on some key regulators of insulin resistance and oxidative liver injury in streptozotocin-nicotinamide type 2 diabetic rats. Molecular Biology Reports, 2019, 46, 3701-3711.	2.3	20
7	Aged garlic extract ameliorates immunotoxicity, hematotoxicity and impaired burn-healing in malathion- and carbaryl-treated male albino rats. Environmental Toxicology, 2017, 32, 789-798.	4.0	19
8	Anti-inflammatory activity of green versus black tea aqueous extract in a rat model of human rheumatoid arthritis. International Journal of Rheumatic Diseases, 2017, 20, 203-213.	1.9	35
9	Fast Monocyte-Derived Dendritic Cell-Based Immunotherapy. Methods in Molecular Biology, 2014, 1139, 131-144.	0.9	4
10	Preventive Effects of Egyptian Sweet Marjoram (Origanum majorana L.) Leaves on Haematological Changes and Cardiotoxicity in Isoproterenol-Treated Albino Rats. Cardiovascular Toxicology, 2013, 13, 100-109.	2.7	12
11	Protective effects of ginger-turmeric rhizomes mixture on joint inflammation, atherogenesis, kidney dysfunction and other complications in a rat model of human rheumatoid arthritis. International Journal of Rheumatic Diseases, 2013, 16, 219-229.	1.9	50
12	Egyptian sweet marjoram leaves protect against genotoxicity, immunosuppression and other complications induced by cyclophosphamide in albino rats. British Journal of Nutrition, 2012, 108, 1059-1068.	2.3	23
13	In vitroexpansion of human î³î′ and CD56+T-cells byAspergillus-antigen loaded fast dendritic cells in the presence of exogenous interleukin-12. Immunopharmacology and Immunotoxicology, 2012, 34, 309-316.	2.4	6
14	Anti-inflammatory and Anti-oxidant Properties of Curcuma longa (Turmeric) Versus Zingiber officinale (Ginger) Rhizomes in Rat Adjuvant-Induced Arthritis. Inflammation, 2011, 34, 291-301.	3.8	136
15	Generation of functional monocyte-derived fast dendritic cells suitable for clinical application in the absence of interleukin-6. Cytotechnology, 2011, 63, 513-521.	1.6	9
16	Modulatory effects of garlic, ginger, turmeric and their mixture on hyperglycaemia, dyslipidaemia and oxidative stress in streptozotocin–nicotinamide diabetic rats. British Journal of Nutrition, 2011, 105, 1210-1217.	2.3	96
17	Anti-metabolic syndrome and immunostimulant activities of Egyptian fenugreek seeds in diabetic/obese and immunosuppressive rat models. British Journal of Nutrition, 2011, 105, 995-1004.	2.3	20
18	Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. British Journal of Nutrition, 2009, 102, 1611.	2.3	81

#	Article	IF	CITATIONS
19	Dendritic cells-based T-cell immune response for the variable region of immunoglobulin light chain of myeloma and lymphoma cell lines. The Egyptian Journal of Immunology / Egyptian Association of Immunologists, 2009, 16, 95-106.	0.4	3
20	Stimulation by means of dendritic cells followed by Epstein–Barr virus-transformed B cells as antigen-presenting cells is more efficient than dendritic cells alone in inducing Aspergillus f16-specific cytotoxic T cell responses. Clinical and Experimental Immunology, 2008, 151, 284-296.	2.6	22
21	Epstein-Barr virus-transformed B-cells as efficient antigen presenting cells to propagate Aspergillus-specific cytotoxic T-lymphocytes. The Egyptian Journal of Immunology / Egyptian Association of Immunologists, 2008, 15, 145-57.	0.4	0
22	Generation of Th1 T cell responses directed to a HLA Class II restricted epitope from the Aspergillus f16 allergen. Clinical and Experimental Immunology, 2005, 139, 257-267.	2.6	33
23	Generation of cytotoxic T cell responses directed to human leucocyte antigen Class I restricted epitopes from the Aspergillus f16 allergen. Clinical and Experimental Immunology, 2005, 140, 81-91.	2.6	47
24	Generation of Aspergillus- and CMV- specific T-cell responses using autologous fast DC. Cytotherapy, 2004, 6, 223-234.	0.7	32
25	Generation of Cytotoxic T Cell Responses Directed to HLA Class I Restricted Epitopes from the Aspergillus f16 Allergen Blood, 2004, 104, 1644-1644.	1.4	1
26	Generation of Th1 T Cell Responses Directed to a HLA Class II Restricted Epitope from the Aspergillus f16 Allergen Blood, 2004, 104, 1645-1645.	1.4	0
27	The proliferative response of T cells to Aspergillus antigen requires prior presentation on dendritic cells. The Egyptian Journal of Immunology / Egyptian Association of Immunologists, 2004, 11, 47-58.	0.4	3
28	Generation of Aspergillus-specific T lymphocytes with cytotoxic activity. The Egyptian Journal of Immunology / Egyptian Association of Immunologists, 2004, 11, 59-70.	0.4	1
29	VLIgMM transgene expression in DC via a GPI-anchor using a novel retroviral vector induces an in vitro autologous T-cell proliferation restricted to MHC class I molecules. The Hematology Journal, 2003, 4, 121-131.	1.4	1
30	In vitro generation of human CD86+ dendritic cells from CD34+ haematopoietic progenitors by PMA and in serum-free medium. Clinical and Experimental Immunology, 2001, 125, 237-244.	2.6	20