
Glen K Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4003128/publications.pdf Version: 2024-02-01

CLENK MADTIN

#	Article	IF	CITATIONS
1	A review of otoacoustic emissions. Journal of the Acoustical Society of America, 1991, 89, 2027-2067.	0.5	697
2	The Clinical Utility of Distortion-Product Otoacoustic Emissions. Ear and Hearing, 1990, 11, 144-154.	1.0	188
3	Evidence for the influence of aging on distortion-product otoacoustic emissions in humans. Journal of the Acoustical Society of America, 1991, 89, 1749-1759.	0.5	132
4	Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: Time course of recovery and effects of lowering L2. Hearing Research, 1994, 75, 161-174.	0.9	91
5	High-Frequency Hearing Influences Lower-Frequency Distortion-Product Otoacoustic Emissions. JAMA Otolaryngology, 1999, 125, 215.	1.5	78
6	Age-related loss of distortion product otoacoustic emissions in four mouse strains. Hearing Research, 1999, 138, 91-105.	0.9	72
7	Spontaneous Otoacoustic Emissions in Different Racial Groups. Scandinavian Audiology, 1993, 22, 3-10.	0.5	62
8	Locus of generation for the 2 f1â^'f2 vs 2 f2â^'f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. Journal of the Acoustical Society of America, 1998, 103, 1957-1971.	0.5	61
9	Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f2. I. Basic findings in rabbits. Hearing Research, 1999, 136, 105-123.	0.9	50
10	Evidence for basal distortion-product otoacoustic emission components. Journal of the Acoustical Society of America, 2010, 127, 2955-2972.	0.5	48
11	Effects of loop diuretics on the suppression tuning of distortion-product otoacoustic emissions in rabbits. Journal of the Acoustical Society of America, 1998, 104, 972-983.	0.5	38
12	Characterizing distortion-product otoacoustic emission components across four species. Journal of the Acoustical Society of America, 2011, 129, 3090-3103.	0.5	37
13	Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Hearing Research, 2004, 194, 87-96.	0.9	29
14	Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones. Journal of the Acoustical Society of America, 2009, 125, EL85-EL92.	0.5	28
15	Susceptibility of DPOAEs to Sound Overexposure in Inbred Mice with AHL. , 2001, 2, 233-245.		27
16	Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f2. II. Findings in humans. Hearing Research, 2003, 177, 111-122.	0.9	25
17	Comparison of the Auditory-Evoked Brainstem Response Wave I to Distortion-Product Otoacoustic Emissions Resulting From Changes to Inner Ear Blood Flow. Laryngoscope, 1999, 109, 186-191.	1.1	24
18	Distortion product otoacoustic emissions show exceptional resistance to noise exposure in MOLF/Ei mice. Hearing Research, 2004, 194, 109-117.	0.9	23

GLEN K MARTIN

#	Article	IF	CITATIONS
19	Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions. Journal of the Acoustical Society of America, 2002, 111, 285-296.	0.5	21
20	Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice. Hearing Research, 2007, 234, 59-72.	0.9	21
21	Assessment of Cochlear Function in Mice: Distortionâ€Product Otoacoustic Emissions. Current Protocols in Neuroscience, 2006, 34, Unit8.21C.	2.6	17
22	Time-domain demonstration of distributed distortion-product otoacoustic emission components. Journal of the Acoustical Society of America, 2013, 134, 342-355.	0.5	16
23	Suppression tuning in noise-exposed rabbits. Journal of the Acoustical Society of America, 2003, 114, 279-293.	0.5	15
24	Noise-induced hearing loss in mice treated with antiretroviral drugs. Hearing Research, 2008, 239, 69-78.	0.9	13
25	Distortion product otoacoustic emissions: Sensitive measures of tympanic -membrane perforation and healing processes in a gerbil model. Hearing Research, 2019, 378, 3-12.	0.9	13
26	Temporary and permanent noise-induced changes in distortion product otoacoustic emissions in CBA/CaJ mice. Hearing Research, 2001, 156, 31-43.	0.9	10
27	Comparing Distortion Product Otoacoustic Emissions to Intracochlear Distortion Products Inferred from a Noninvasive Assay. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 271-287.	0.9	10
28	Effects of tympanic membrane perforation on middle ear transmission in gerbil. Hearing Research, 2019, 373, 48-58.	0.9	10
29	Influence of sound-conditioning on noise-induced susceptibility of distortion-product otoacoustic emissions. Journal of the Acoustical Society of America, 2015, 138, 58-64.	0.5	4
30	Effects of combined gentamicin and furosemide treatment on cochlear ribbon synapses. NeuroToxicology, 2021, 84, 73-83.	1.4	4
31	Otoacoustic emissions. Handbook of Clinical Neurophysiology, 2013, 10, 115-135.	0.0	1
32	An intracochlear DP-gram: Proof of principle in noise-damaged rabbits. Hearing Research, 2020, 396, 108058.	0.9	1
33	Demonstration of distributed distortion-product otoacoustic emission components using onset-latency techniques. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
34	Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 261-274.	0.9	0