
Moray J Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4002227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting non-canonical pathways as a strategy to modulate the sodium iodide symporter. Cell Chemical Biology, 2022, 29, 502-516.e7.	2.5	8
2	EMT alterations in the solute carrier landscape uncover SLC22A10/A15 imposed vulnerabilities in pancreatic cancer. IScience, 2022, 25, 104193.	1.9	2
3	Epigenomic alterations in cancer: mechanisms and therapeutic potential. Clinical Science, 2022, 136, 473-492.	1.8	4
4	Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers, 2022, 14, 2402.	1.7	4
5	Targeting OCT3 attenuates doxorubicin-induced cardiac injury. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
6	Inhibition of androgen/AR signaling inhibits diethylnitrosamine (DEN) induced tumour initiation and remodels liver immune cell networks. Scientific Reports, 2021, 11, 3646.	1.6	10
7	Light-induced changes in the suprachiasmatic nucleus transcriptome regulated by the ERK/MAPK pathway. PLoS ONE, 2021, 16, e0249430.	1.1	5
8	An AIB1 Isoform Alters Enhancer Access and Enables Progression of Early-Stage Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 4230-4241.	0.4	11
9	Gilteritinib Inhibits Glutamine Uptake and Utilization in <i>FLT3</i> -ITD–Positive AML. Molecular Cancer Therapeutics, 2021, 20, 2207-2217.	1.9	27
10	EMT-Induced Gemcitabine Resistance in Pancreatic Cancer Involves the Functional Loss of Equilibrative Nucleoside Transporter 1. Molecular Cancer Therapeutics, 2021, 20, 410-422.	1.9	26
11	Gilteritinib-induced upregulation of S100A9 is mediated through BCL6 in acute myeloid leukemia. Blood Advances, 2021, 5, 5041-5046.	2.5	4
12	Challenges and Opportunities of Genomic Approaches in Therapeutics Development. Methods in Molecular Biology, 2021, 2194, 107-126.	0.4	2
13	Reduced NCOR2 expression accelerates androgen deprivation therapy failure in prostate cancer. Cell Reports, 2021, 37, 110109.	2.9	19
14	Targeting Novel Sodium lodide Symporter Interactors ADP-Ribosylation Factor 4 and Valosin-Containing Protein Enhances Radioiodine Uptake. Cancer Research, 2020, 80, 102-115.	0.4	31
15	Identification of transcription factor co-regulators that drive prostate cancer progression. Scientific Reports, 2020, 10, 20332.	1.6	19
16	Overcoming resistance to anabolic SARM therapy in experimental cancer cachexia with an HDAC inhibitor. EMBO Molecular Medicine, 2020, 12, e9910.	3.3	21
17	A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury. Nature Communications, 2020, 11, 1924.	5.8	34
18	The miR-96 and RARÎ ³ signaling axis governs androgen signaling and prostate cancer progression. Oncogene, 2019, 38, 421-444.	2.6	45

#	Article	IF	CITATIONS
19	Discovery of a novel long noncoding RNA overlapping the LCK gene that regulates prostate cancer cell growth. Molecular Cancer, 2019, 18, 113.	7.9	10
20	Non-coding and Coding Transcriptional Profiles Are Significantly Altered in Pediatric Retinoblastoma Tumors. Frontiers in Oncology, 2019, 9, 221.	1.3	27
21	High-Dimensional Data Approaches to Understanding Nuclear Hormone Receptor Signaling. Methods in Molecular Biology, 2019, 1966, 291-311.	0.4	1
22	PseudoFuN: Deriving functional potentials of pseudogenes from integrative relationships with genes and microRNAs across 32 cancers. GigaScience, 2019, 8, .	3.3	18
23	MiR-644a Disrupts Oncogenic Transformation and Warburg Effect by Direct Modulation of Multiple Genes of Tumor-Promoting Pathways. Cancer Research, 2019, 79, 1844-1856.	0.4	35
24	Tales from topographic oceans: topologically associated domains and cancer. Endocrine-Related Cancer, 2019, 26, R611-R626.	1.6	6
25	PTTG and PBF Functionally Interact with p53 and Predict Overall Survival in Head and Neck Cancer. Cancer Research, 2018, 78, 5863-5876.	0.4	14
26	RANBP9 affects cancer cells response to genotoxic stress and its overexpression is associated with worse response to platinum in NSCLC patients. Oncogene, 2018, 37, 6463-6476.	2.6	15
27	Bioinformatic approaches to interrogating vitamin D receptor signaling. Molecular and Cellular Endocrinology, 2017, 453, 3-13.	1.6	11
28	Integrative genomic approaches to dissect clinically-significant relationships between the VDR cistrome and gene expression in primary colon cancer. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 130-138.	1.2	14
29	Vitamin D Receptor Signaling and Cancer. Endocrinology and Metabolism Clinics of North America, 2017, 46, 1009-1038.	1.2	52
30	Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-IºB binding that is linked to immune phenotypes. BMC Genomics, 2017, 18, 132.	1.2	35
31	The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer. Biomolecules, 2017, 7, 15.	1.8	92
32	miRNAs as drivers of TMPRSS2-ERG negative prostate tumors in African American men. Frontiers in Bioscience - Landmark, 2017, 22, 212-229.	3.0	14
33	Dietary folate levels alter the kinetics and molecular mechanism of prostate cancer recurrence in the CWR22 model. Oncotarget, 2017, 8, 103758-103774.	0.8	13
34	Knockdown of AKR1C3 exposes a potential epigenetic susceptibility in prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155, 47-55.	1.2	15
35	A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells. PLoS Computational Biology, 2016, 12, e1004884.	1.5	5
36	Integrative genomic analysis in K562 chronic myelogenous leukemia cells reveals that proximal NCOR1 binding positively regulates genes that govern erythroid differentiation and Imatinib sensitivity. Nucleic Acids Research, 2015, 43, 7330-7348.	6.5	22

#	Article	IF	CITATIONS
37	VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription. Epigenetics, 2015, 10, 40-49.	1.3	15
38	Vitamin D Receptor and RXR in the Postâ€Genomic Era. Journal of Cellular Physiology, 2015, 230, 758-766.	2.0	35
39	Nuclear receptors and the <scp>Warburg</scp> effect in cancer. International Journal of Cancer, 2015, 137, 1519-1527.	2.3	29
40	Pan-Cancer Analyses of the Nuclear Receptor Superfamily. Nuclear Receptor Research, 2015, 2, .	2.5	40
41	Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements. Oncotarget, 2015, 6, 42575-42589.	0.8	30
42	Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget, 2014, 5, 824-840.	0.8	52
43	Vitamin D and the RNA transcriptome: more than mRNA regulation. Frontiers in Physiology, 2014, 5, 181.	1.3	58
44	Cooperative behavior of the nuclear receptor superfamily and its deregulation in prostate cancer. Carcinogenesis, 2014, 35, 262-271.	1.3	19
45	Recruitment of NCOR1 to VDR target genes is enhanced in prostate cancer cells and associates with altered DNA methylation patterns. Carcinogenesis, 2013, 34, 248-256.	1.3	50
46	Epigenetic distortion to VDR transcriptional regulation in prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 258-263.	1.2	12
47	Vitamin D receptor signaling mechanisms: Integrated actions of a well-defined transcription factor. Steroids, 2013, 78, 127-136.	0.8	234
48	Altered Histone Modifications in Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 81-107.	0.8	36
49	Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D3 Target Genes in a Human Myeloid Leukemia Cell Line. Cancers, 2013, 5, 1221-1241.	1.7	22
50	1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC): Implications for Use of 1,25(OH)2D3 in NSCLC Treatment. Cancers, 2013, 5, 1504-1521.	1.7	37
51	The Interactions of microRNA and Epigenetic Modifications in Prostate Cancer. Cancers, 2013, 5, 998-1019.	1.7	33
52	Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle, 2012, 11, 1081-1089.	1.3	112
53	Regulation of CYP3A4 and CYP3A5 expression and modulation of "intracrine―metabolism of androgens in prostate cells by liganded vitamin D receptor. Molecular and Cellular Endocrinology, 2012, 364, 54-64.	1.6	23
54	Vitamin D Receptor. Oxidative Stress and Disease, 2012, , 37-64.	0.3	0

#	Article	IF	CITATIONS
55	Analysis of Normal-Tumour Tissue Interaction in Tumours: Prediction of Prostate Cancer Features from the Molecular Profile of Adjacent Normal Cells. PLoS ONE, 2011, 6, e16492.	1.1	17
56	Epigenetic control of a VDR-governed feed-forward loop that regulates p21 (waf1/cip1) expression and function in non-malignant prostate cells. Nucleic Acids Research, 2011, 39, 2045-2056.	6.5	65
57	KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Human Molecular Genetics, 2011, 20, 4655-4665.	1.4	145
58	The Molecular Cancer Biology of the VDR. , 2011, , 25-52.		6
59	Transcription factor coâ€repressors in cancer biology: roles and targeting. International Journal of Cancer, 2010, 126, 2511-2519.	2.3	84
60	Pituitary Tumor Transforming Gene Binding Factor: A New Gene in Breast Cancer. Cancer Research, 2010, 70, 3739-3749.	0.4	40
61	Design principles of nuclear receptor signaling: how complex networking improves signal transduction. Molecular Systems Biology, 2010, 6, 446.	3.2	32
62	Vitamin D and p53â^'Differentiating their relationship in AML. Cancer Biology and Therapy, 2010, 10, 351-353.	1.5	3
63	Elevated NCOR1 disrupts PPARα/γ signaling in prostate cancer and forms a targetable epigenetic lesion. Carcinogenesis, 2010, 31, 1650-1660.	1.3	56
64	The Vitamin D Receptor (NR111). , 2010, , 203-236.		0
65	Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis, 2009, 30, 449-456.	1.3	44
66	Myeloid differentiation continues to reveal the complexity of nuclear receptor signaling. Cell Cycle, 2009, 8, 675-676.	1.3	0
67	Transcription factors, chromatin and cancer. International Journal of Biochemistry and Cell Biology, 2009, 41, 164-175.	1.2	40
68	Oesophageal adenocarcinoma is associated with a deregulation in the MYC/MAX/MAD network. British Journal of Cancer, 2008, 98, 1985-1992.	2.9	14
69	The vitamin D receptor in cancer. Proceedings of the Nutrition Society, 2008, 67, 115-127.	0.4	124
70	A Role for the PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>in Cancer Therapy. PPAR Research, 2008, 2008, 1-17.</mml:math 	1.1	32
71	Staying power. Nature, 2007, 446, 468-468.	13.7	1

#	Article	IF	CITATIONS
73	Inhibition of Vitamin D3 metabolism enhances VDR signalling in androgen-independent prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2006, 98, 228-235.	1.2	42
74	Identification of VDR-Responsive Gene Signatures in Breast Cancer Cells. Oncology, 2006, 71, 111-123.	0.9	41
75	The vitamin D receptor as a therapeutic target. Expert Opinion on Therapeutic Targets, 2006, 10, 735-748.	1.5	66
76	Vitamin D and cancer. Expert Review of Endocrinology and Metabolism, 2006, 1, 219-231.	1.2	2
77	Met Receptor Signaling: A Key Effector in Esophageal Adenocarcinoma. Clinical Cancer Research, 2006, 12, 5936-5943.	3.2	34
78	Altered Nuclear Receptor Corepressor Expression Attenuates Vitamin D Receptor Signaling in Breast Cancer Cells. Clinical Cancer Research, 2006, 12, 2004-2013.	3.2	77
79	The Actions of the Vitamin D Receptor in Health and Malignancy; Polymorphic Associations and Gene Regulatory Actions. , 2006, , 129-175.		0
80	Epigenetic corruption of VDR signalling in malignancy. Anticancer Research, 2006, 26, 2557-66.	0.5	44
81	Vitamin D status and breast cancer risk. Anticancer Research, 2006, 26, 2573-80.	0.5	47
82	Possible synergistic prostate cancer suppression by anatomically discrete pomegranate fractions. Investigational New Drugs, 2005, 23, 11-20.	1.2	149
83	Autocrine Metabolism of Vitamin D in Normal and Malignant Breast Tissue. Clinical Cancer Research, 2005, 11, 3579-3586.	3.2	167
84	Biological actions of extra-renal 25-hydroxyvitamin D-1α-hydroxylase and implications for chemoprevention and treatment. Journal of Steroid Biochemistry and Molecular Biology, 2005, 97, 103-109.	1.2	143
85	Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Oncogene, 2004, 23, 6712-6725.	2.6	130
86	Pomegranate Extracts Potently Suppress Proliferation, Xenograft Growth, and Invasion of Human Prostate Cancer Cells. Journal of Medicinal Food, 2004, 7, 274-283.	0.8	206
87	Mechanisms of decreased Vitamin D 1α-hydroxylase activity in prostate cancer cells. Molecular and Cellular Endocrinology, 2004, 221, 67-74.	1.6	40
88	Epigenetic repression of transcription by the Vitamin D3 receptor in prostate cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 251-256.	1.2	7
89	Targeting 1α,25-dihydroxyvitamin D3 antiproliferative insensitivity in breast cancer cells by co-treatment with histone deacetylation inhibitors. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 245-249.	1.2	37
90	Antiproliferative Signalling by 1, 25(OH)2D3in Prostate and Breast Cancer Is Suppressed by a Mechanism Involving Histone Deacetylation. Recent Results in Cancer Research, 2003, 164, 83-98.	1.8	39

#	Article	IF	CITATIONS
91	Phytoestrogens Regulate Vitamin D Metabolism in the Mouse Colon: Relevance for Colon Tumor Prevention and Therapy. Journal of Nutrition, 2002, 132, 3490S-3493S.	1.3	52
92	1α,25-dihydroxyvitamin D3 displays divergent growth effects in both normal and malignant cells. Steroids, 2001, 66, 433-440.	0.8	24
93	Highly active analogs of 1α,25-dihydroxyvitamin D3 that resist metabolism through C-24 oxidation and C-3 epimerization pathways. Steroids, 2001, 66, 463-471.	0.8	55
94	Metabolism of 1α,25-dihydroxyvitamin D3 in human promyelocytic leukemia (HL-60) cells: In vitro biological activities of the natural metabolites of 1α,25-dihydroxyvitamin D3 produced in HL-60 cells. Steroids, 2001, 66, 423-431.	0.8	17
95	Synergistic growth inhibition of prostate cancer cells by 1α,25 Dihydroxyvitamin D3 and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene, 2001, 20, 1860-1872.	2.6	122
96	The anti-proliferative effects of 11±,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene, 2000, 19, 5091-5097.	2.6	94
97	Synthesis and biological activities of the two C(23) epimers of 1α,23,25-trihydroxy-24-oxo-19-nor-vitamin D3: novel analogs of 1α,23(S),25-trihydroxy-24-oxo-vitamin D3, a natural metabolite of 1α,25-dihydroxyvitamin D3. Steroids, 2000, 65, 252-265.	0.8	5
98	Synergistic inhibition of prostate cancer cell lines by a 19- nor hexafluoride vitamin D3 analogue and anti-activator protein 1 retinoid. British Journal of Cancer, 1999, 79, 101-107.	2.9	21
99	Novel 20-epi-vitamin D3 analog combined with 9-cis-retinoic acid markedly inhibits colony growth of prostate cancer cells. , 1999, 40, 141-149.		46
100	Metabolism of 1α,25(OH)2D3 and its 20-epi analog integrates clonal expansion, maturation and apoptosis during HL-60 cell differentiation. Molecular and Cellular Endocrinology, 1999, 149, 169-183.	1.6	25
101	Novel 20-epi-vitamin D3 analog combined with 9-cis-retinoic acid markedly inhibits colony growth of prostate cancer cells. , 1999, 40, 141.		1
102	Expression of Retinoic Acid Receptor-β Sensitizes Prostate Cancer Cells to Growth Inhibition Mediated by Combinations of Retinoids and a 19-nor Hexafluoride Vitamin D3 Analog*. Endocrinology, 1998, 139, 1972-1980.	1.4	66
103	Growth inhibition of DU-145 prostate cancer cells by a Bcl-2 antisense oligonucleotide is enhanced by N-(2-hydroxyphenyl)all-trans retinamide. British Journal of Cancer, 1998, 77, 739-744.	2.9	22
104	Toward Therapeutic Intervention of Cancer by Vitamin D Compounds. Journal of the National Cancer Institute, 1997, 89, 182-185.	3.0	55
105	Potent tumoricidal effects of a human cytotoxic T-cell line (TALL-104) against prostate cancer. International Journal of Oncology, 1997, 10, 1125-31.	1.4	0
106	Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21waf1, p27kip1 and E-cadherin. Journal of Molecular Endocrinology, 1997, 19, 15-27.	1.1	177
107	Vitamin D Receptor: No Evidence for Allele-Specific mRNA Stability in Cells Which Are Heterozygous for the Taq I Restriction Enzyme Polymorphism. Biochemical and Biophysical Research Communications, 1997, 238, 77-80.	1.0	92
108	Inhibition of growth of human leukemia cell lines by retrovirally expressed wild-type p16INK4A. Leukemia, 1997, 11, 1673-1680.	3.3	27

#	Article	IF	CITATIONS
109	Vitamin D3 analogs and their 24-Oxo metabolites equally inhibit clonal proliferation of a variety of cancer cells but have differing molecular effects. Journal of Cellular Biochemistry, 1997, 66, 413-425.	1.2	83
110	Integrity of the 1,25-dihydroxyvitamin D3 receptor in bone, lung, and other cancers. , 1997, 19, 254-257.		29
111	Alterations of the p15, p16, and p18 genes in osteosarcoma. Cancer Genetics and Cytogenetics, 1996, 86, 136-142.	1.0	109
112	Investigation of the stability and selectivity of phenylalanine transport across a supported liquid membrane. Journal of Chemical Technology and Biotechnology, 1994, 60, 263-273.	1.6	5
113	Effect of temperature on protein conformation and activity during ultrafiltration. Journal of Membrane Science, 1993, 78, 35-43.	4.1	105
114	Targeting Non-Canonical Pathways as a Strategy to Modulate the NIS Symporter. SSRN Electronic Journal, 0, , .	0.4	0